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Abstract

This course on the computational fluid dynamics code CFL3D version 6.4 is intended to provide from basic to advanced 
users the information necessary to successfully use the code for a broad range of cases.  Much of the course covers 
capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and 
from the CFL3D v6 web site prior to the current release.   This part of the material is presented to users of the code not 
familiar with computational fluid dynamics.  There is new capability in CFL3D version 6.4 presented here that has not 
previously been published.   There are also outdated features no longer used or recommended in recent releases of the 
code.  The information offered here supersedes earlier manuals and updates outdated usage.  Where current usage 
supersedes older versions, notation of that is made.  It also provides hints for usage, code installation and examples not 
found elsewhere.   
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Introduction and Course Overview
These notes are an outgrowth of a course that was presented on the computational fluid dynamics code CFL3D version 
6.4.  Publication of this material in this form makes it available to many more users of the code.  These notes provide
the information necessary to successfully use the code for a broad  range of cases.  The target audience ranges from 
basic to advanced users.   New users should find useful the discussion of general features of the code and the many 
options that are available, code set up, creation of grids and input for steady and unsteady computations. This part of 
the notes also discusses what new features are available in version 6.4.  There is a lengthy discussion of issues related 
to unsteady computations, moving and deforming meshes, aeroelastic simulations and parallel computing using the 
message passing interface (MPI).  Within these discussions there are detailed instructions on input parameters,  
their use within the code, as well as illustrative examples.

Much of the course covers capability that has been a part of previous versions of the code, with material compiled from 
a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release.   This part of the material is 
presented to users of the code not familiar with computational fluid dynamics.  There is also new capability in CFL3D 
v6.4 that has not previously  been published.  This course intends to acquaint users with this new capability. There are 
also outdated features no longer used or recommended in recent releases of the code.  The information offered here 
supersedes earlier manuals and updates outdated usage.  Where current usage supersedes older versions, notation of 
that is made.   It also provides hints for usage and code installation not found elsewhere. 

There is much information in the CFL3D v5.0 manual that is not presented in these notes.  The use of patched, overset 
or embedded grids is not discussed here. Since the intention is to provide users a practical guide on code usage, 
there is very little discussion of the fluid dynamics equations and computational method used.  This information is 
available in the CFL3D v5.0 manual. 
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Introduction and Course Overview

The attempt is to organize this course in an intuitive way.  Topics are  presented in the order they would be  
encountered in the process of building up a real test case. The ordering of the information reflects the course 
instructor’s own learning experience with CFL3D.  Others may order the material  differently.  This course is not 
comprehensive.  Because of the vast number of ways in which CFL3D can be used there are many input options that 
are not discussed and none are discussed in complete detail. Those that are discussed are the more commonly used 
features.    By the end of the course the attendee should be able to perform a number of different analyses with the 
code.  If the reader is interested in more detail also consult the CFL3D v6 web page and the CFL3D v5.0 user’s 
manual.  These references are listed at the back of the course notes. 
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What’s New in CFL3D v6.4
There is new capability in CFL3D v6.4 that is presented in this course. 
They are:

• New mesh deformation scheme with more options available.
• Second order time accuracy in turbulence modeling
• New keywords are available

- First order time accurate turbulence modeling
- New options in turbulence modeling
- Full Navier-Stokes terms available
- Option to exercise mesh deformation without full flow solver
- Calculation of CFL number can be modified for axisymmetric

cases to increase convergence rate
• Changes in the input for prescribed modal motion
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CFL3D Overview
• CFL3D – Computational Fluids Laboratory 3-D flow solver

– Euler
– Laminar thin-layer Navier-Stokes
– Reynolds-Averaged thin-layer Navier-Stokes (RANS)
– Structured grid
– Single or multi-block
– Dynamic memory
– Parallel (MPI) capability
– Moving grid and mesh deformation capability
– CGNS (CFD General Notation System) capability for CFD output

• Discretization and numerical method
– Conservation law form of the Euler or RANS equations
– Spatial discretization is semi-discrete finite-volume approach
– Upwind-Biasing is used for the convective and pressure terms
– Solves either the steady or unsteady form of the equations
– Time advancement is implicit with dual time stepping

and sub-iterations
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CFL3D Overview
• Discretization and numerical method (…continued)

– Approximate-Factorized (AF) numerical scheme
– Explicit block boundary conditions
– Multigrid
– Grid sequencing

• Block structures
– 1-1 blocking (preferred)
– Patching
– Overlapping
– Embedding
– Sliding patched zone interfaces
– Grids must have been created prior to execution of CFL3D
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CFL3D Overview
• Turbulence models for RANS computation

– 0-equation models: Baldwin-Lomax, Baldwin-Lomax with Degani-Schiff 
modification

– 1-equation models: Baldwin-Barth, Spalart-Allmaras (Including DES)
– 2-equation models: Wilcox k-ω model, Menter’s k-ω Shear Stress Transport 

(SST) model, Abid k-ω model, several EASM k-ω and k-ε model variations, k-
enstrophy model

• Computing modes
– Sequential or single processor (single or multiple blocks)
– Parallel processing 

• Message Passing Interface (MPI)
– Requires multi-block structure
– May be run on distributed memory machines. (PC clusters or parallel 

supercomputer)
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CFL3D Overview
• Computing modes (…continued)

– Complex computation 
• Allows computation of sensitivity derivatives due to static and dynamic variables (e.g. 

dCL/dα)
• Requires compiling of the complex executable for static and dynamic sensitivity 

calculations
• Dynamic sensitivity calculations require additional keyword input

• Code developers and points of contact:
– Many developers have contributed to CFL3D
– Most recent primary NASA LaRC developers (POC’s) are: 

Dr. Robert T. Biedron (757-864-2156, r.t.biedron@larc.nasa.gov)  general flow solver, 
multiblock, MPI
Dr. Christopher Rumsey (757-864-2165,c.l.rumsey@larc.nasa.gov) – turbulence models 
Dr. Bob Bartels (757-864-2813, r.e.bartels@larc.nasa.gov)   –
aeroelastic modules and deforming mesh
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CFL3D Overview
• Online and printable documentation:

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html
• Recommend printing the Version 5.0 manual for reference (found as a link at 

the web site above)
• Acquiring the code:

– Version 6 is currently available for general distribution to U.S. citizens within the United 
States. The code cannot be released outside of the United States. If you would like a copy 
of the code, please follow the request procedure below: 

– Send e-mail or FAX (757-864-8816) to one of the POC’s requesting CFL3D Version 6, along 
with a brief description of the planned usage of the code, your phone number, and FAX 
number. 

– Your request will be forwarded internally to a NASA Software Releasing Authority (SRA). The 
SRA will determine whether or not the code may be released to the you; if so, the SRA will e-
mail or FAX a Usage Agreement to you to fill out, sign and return to the SRA. 

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.html
mailto:r.t.biedron@larc.nasa.gov
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CFL3D Overview
• After the SRA has granted permission, the code will be provided to the you 

electronically. In addition, you will be added to the Version 6 user list, and will 
receive any updates and/or corrections that occur. 

• Note: even if you are a registered Version 5 user you must still follow the 
formal request procedure for Version 6.

• Conditions of use:
– Do not distribute any part of the code outside of your working group 
– Report any bugs you may find 
– CFL3D is restricted to use within the United States 
– Abide by any additional conditions in the usage agreement 
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Getting Started
• To install CFL3v6 on a particular machine, you must have 

the following file:

cfl3dv6.tar.DATE.gz (tarred and gzipped version 6 package) 

Note: DATE indicates the release date in the form MMM_DD_YYYY.   For
example, cfl3dv6.tar.Sep_12_2003 indicates the code as of 
September 12, 2003. 

• Make sure that: ./ is in your path; if not, you will have to explicitly prepend ./ to 
all the commands below

Type: 

gunzip cfl3dv6.tar.DATE.gz 

tar -xvf cfl3dv6.tar.DATE 
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Getting Started
You should end up with the following directory structure:

CFL3DV6

SOURCE    BUILD   HEADER 

Within the source directory:
SOURCE

CFL3D      PRECFL3D    RONNIE     MAGGIE    SPLITTER    TOOLS 

DIST     LIBS
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Getting Started
Within the build directory:

BUILD 

CFL         CFLCMPLX         PRECFL    PRERON   RON   MAG TOOLS   SPLIT

LIBS SEQ MPI  LIBS SEQ MPI               SEQ               SEQ  SEQ      SEQ      SEQ         SEQ          

This is the directory in which
the ./Install and ./make commands
are executed

After making, the 
executable cfl3d_seq will be
found here

After making, the
executable cfl3d_mpi will be
found here
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Getting Started
– In the subdirectory build, type:

Install [options]   or  ./Install [options]

Where [options] may be blank or one or more of the following: 

-no_opt
• create executables with little optimization but fast compilation

-single 
• create single precision executables 

-noredirect
• disallow redirected input file; needed only for SP2 and sometimes on Linux with MPI 

-mpichdir=dir1
• use MPICH on a workstation cluster; dir1 is the directory where mpich is located - not used on MPP 

machines 
-linux_compiler_flags=flag
• sets up to compile using special compiler flags for use on Linux operating systems only; flag is 

currently Intel, PG, Lahey, or Alpha (Intel is currently the default)  Example:  To use the Portland 
Group compiler MUST install with:  ./Install -linux_compiler_flags=PG

-help 
• print out the Install options 
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Getting Started
– Note: the directory paths for either the mpichdir or cgnsdir options 

should be either absolute paths or paths relative to the installation 
directory; the use of ~ to denote a home directory is not allowed. 

– If -no_opt is not specified, various compiler optimization levels are used
to speed execution but results in slower compilation. 

– If -mpichdir=dir1 is not used, then it is assumed "native" MPI is 
available, and will use a default location for the necessary MPI libraries. 

– If -single is not used, then double precision executables will be created 
at the make [ ] command. 

– Once installation is complete, a makefile will  automatically be created 
for the machine platform on which the code is installed.

– Go to the build directory. 
– By typing “make” you will see all the make options available.
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Getting Started
– Several of the most common make options are:

make cfl3d_seq    - make the sequential (single processor) version of the code
make cfl3d_mpi    - make the MPI (multiprocessor) version of the code
make splitter         - make the block splitter executable
make cfl3d_tools  - make some of the cfl3d utilities

– Within the build directory, type the make option for the executable you 
want.

– To execute the sequential code type:
./cfl3d_seq < cfl3d.inp    

– To execute the MPI code type:
mpirun –np <noprocessors> ./cfl3d_mpi < cfl3d.inp

where <noprocessors> is typically one greater than the number of blocks*

*  The MPI process requires an extra administrative processor beyond those that perform the 
computation.  (e.g.  For a 12 block grid, all with equal numbers of grid points, to be run on 3 
processors,  noprocessors = 4)
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Equations and dimensions
Reference parameters

• The governing equations are the Euler or Navier-Stokes 
equations combined with a turbulence model for RANS 
computation

• The governing equations are non-dimensionalized based 
on the following  parameters:
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LR Reference length used by the code (dimensional)

Free-stream density, slug/feet3

Free-stream speed of sound, feet/second

Free-stream molecular viscosity, slug/feet-second
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Equations and dimensions

• Since there is no standard system of units for CFD models 
the non-dimensionalization in CFL3D removes the necessity 
of converting grids into units compatible with the code. The 
way in which this is accomplished will be presented later in
this course.

• Note that the term free-stream is used in the 
non-dimensionalization.  CFL3D was developed primarily as
an external flow solver.  It has the capability to perform 
computations for internal flows as well.  Therefore a more 
general term reference state should probably be used, but
the term free-stream is used throughout the documentation.
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Equations and dimensions
Non-dimensional variables

In CFL3D the non-dimensionalizations are performed as follows:
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and ref length

Velocities nondim-
ensionalized by 
speed of sound

Non-dimensionalizing by speed of sound makes transonic the natural flow regime for CFL3D,
although low speed and hypersonic flows can be computed, with modified input, as well.
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Problem Formulation and Setup
Overview

• There are five steps in problem formulation and setup 
for steady and unsteady computation:

- Condition definition
- Grid generation
- Block splitting (if necessary)
- Blocking and boundary conditions
- Input development

• Parameters that define a condition are:

- Mach number
- Reynolds number
- Ambient temperature
- Grid orientation (angle of attack, side slip, etc…)

Input for these will be discussed later.  For the moment several of
these parameters are required for the proper construction of the grid…
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Problem Formulation and Setup
Grid generation

Considerations that are important for generation of a grid:

• Reynolds number sets permissible ∆y+ at the surface.
• For most turbulent computations typically want a y+ ~ 1 

for first grid off the surface
• For turbulent computations with wall function, typically want a 

y+ ~ 50-100 for first grid off the surface
• This requires an estimate of the wall shear stress prior to 

computing

Note:   
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Problem Formulation and Setup
Grid generation

• After the first converged successful run with a course grid, y+ of the 
first grid can be checked. This is found at the end of the cfl3d.out 
file.

YPLUS STATISTICS (endpts not included) - BLOCK  1 (GRID  1)

K=1    SURFACE:
Y+ MAX   JLOC   ILOC       Y+ MIN   JLOC   ILOC

0.535E+00    151       1        0.261E-01    217      1
DN MAX   JLOC   ILOC       DN MIN   JLOC   ILOC

0.152E-05    228        1        0.149E-05    219      1
Y+ AVG    Y+ STD DEV      NY+ > 5   NPTS

0.264E+00     0.373E+00             0          199

YPLUS STATISTICS (endpts not included) - ALL GLOBAL BLOCKS
Y+ MAX   ILOC   JLOC   KLOC  BLOCK   GRID

0.535E+00      1      151        1            1       1
Y+ MIN   ILOC   JLOC   KLOC  BLOCK   GRID

0.261E-01       1      217        1            1          1

etc…
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Problem Formulation and Setup
Grid generation

• Grid stretching away from a surface.  
• Rule of thumb: ∆ζk+1 should be no more than 1.2 to 1.5 times ∆ζk

∆ζk+1

∆ζk
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Problem Formulation and Setup
Grid generation

• Outer extent of grid
• Rule of thumb: The outer boundary should be at least 15-20 body 

lengths away (3D) and at least 30 body lengths away (2D). This is 
not a hard and fast rule and there are some notable exceptions.
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Problem Formulation and Setup
Grid generation

• Grid quality
• Grid metric smoothness.  CFL3D assesses the size of local 

variations in grid metrics.  Warnings are printed to the cfl3d.out 
file. Any messages of the following form indicate a problem with  
the grid:

FATAL si grid normal direction change near j,k,i,i+1=   23    5  164  165
... suspect bad grid

FATAL sj grid normal direction change near j,k,i,i+1=   23    5  164  165
... suspect bad grid

Etc… Or

WARNING: Dramatic si grid norm direction change (>120deg) 
WARNING: Dramatic sj grid norm direction change (>120deg)

Etc…
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Problem Formulation and Setup
Grid generation

• Grid quality, continued
• Negative grid volumes.  CFL3D checks whether there are   

negative volumes in the grid.  Under normal operating procedures
the code will exit with an error message in the cfl3d.error file.*

• Grid clustering to resolve flow gradients
• Resolving a wake.  Although angle of attack is specified in the 

input, it does result in the possibility of flow separation and wing 
stall and resulting wake.  These may need grid clustering.

• Resolving a shock or curvature effect.  Mach number effects 
such as a shock or surface curvature may result in gradients that 
require resolving. 

• These steps must be performed prior to running CFL3D.

* There is a keyword option that allows computing to continue with negative volumes.  This option will be 
discussed later in the course under “Keyword Input”.
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Problem Formulation and Setup
Grid generation

• Grid file format
• The grid file format must be unformatted
• Two grid data formats are possible, plot3d and cfl3d.  These

formats are presented in the CFL3D version 5.0 manual.
• If CFL3D is compiled in double precision, the grid file must be   

written as double precision real
• Example of multi-platform issue:  If a Linux compiler is used to 

compile CFL3D to read an SGI unformatted grid file, the grid file 
must be generated with the same compile options  

Example:  Suppose the code ‘hygrid’ is used to generate the unformatted 
grid file.  On a Linux based PC platform using the Portland Group
compiler, the compile option –byteswapio swaps bytes from 
big-endian to little-endian for input compatibility with a Sun or 
SGI system. This will allow CFL3D compiled with this option to 
read the grid file created either on the PC cluster using this compiler
option or on an SGI machine.
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Problem Formulation and Setup
Grid generation

CFL3D requires that the right-hand rule be observed in both the 
x,y,z orientation and the i,j,k index directions.  Also, i,j and k do not 
have to be in the x,y and z directions.  Any permutation is valid as 
long as the right-hand rule is upheld.  Caveat:  When using 
turbulence models there are direction preferences as will be 
discussed.

kk

j

i ij
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Problem Formulation and Setup
Multigridable dimensions

To use multigrid, grid dimensions including all b.c. segments must be multigridable

From CFL3D User’s Manual, 7.1.2, pg 129
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Problem Formulation and Setup
Multigrid dimensions

From CFL3D User’s Manual, 7.1.2, pg 129
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Problem Formulation and Setup
Blocking and boundary conditions

Blocking and boundary conditions are specified at the following boundaries:

i0   (i=1)  and idim
j0   (j=1) and jdim
k0 (k=1) and kdim

where idim, jdim and kdim are the block dimensions in the ijk-directions.  
Blocking and boundary condition data can be composed of multiple
segments but the combined segments must span the each of the six block 
faces.  Note that to perform multigrid computations, the boundary and 
blocking segments must be multigridable integers.
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Problem Formulation and Setup
Blocking and boundary conditions

Example of possible blocking or boundary condition segments on the k0 
face. Suppose that part of the k0 face below represents the surface of a 
wing.  
j=4

Blocking
segment

j=1
i=1 i=5Solid surface boundary

condition segment
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Problem Formulation and Setup
Blocking and boundary conditions

Volume edges define geometric extremities.  These will also be the
start and end points of blocking pairs. All blocking and boundary 
conditions will be on external surfaces of grid blocks.

Example:  Trailing edge of an airfoil or tip of a wing.

Volume corners defined 
by grid points, airfoil 
trailing edge or wing tip
defined by volume edge

Airfoil trailing
edge or wing
tip

Block boundary
that will require
blocking data. 
This boundary will
comprise part or all 
of a grid face.
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Problem Formulation and Setup
Blocking and boundary conditions

Blocking defines the start and ending indices of 1-1 interfaces between one or 
more corresponding grid blocks.

Consider the example of a 2D airfoil using a single block C-grid with 
dimension 2x273x93.  CFL3D is a finite volume code and therefore requires 
2 grid points in the span-wise direction (always i-dir for a 2D grid)

j=237
(t.e.) j=273

j=37
(t.e.)

j=1
j=1

j=273

k=1

k=93
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Problem Formulation and Setup
Blocking and boundary conditions

The following is the steady input file for the 
single block C-grid 2D airfoil.  Highlighted 
sections are the blocking and boundary 
condition input:

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha       beta       ReUe Tinf,dR ialph ihstry

0.753       1.10          0.0    5.7567      460.0       0           0
sref cref bref xmc ymc zmc
1.0         1.0 1.0 0.075          0.0         0.0
dt irest iflagts fmax iunst cfl_tau

-2.0           0             0          1.0             0        5.0

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1               1              1       1000           0              1             1          -2

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0               0             1       0              0             5

idim jdim kdim
2           273            93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0             0               0            0         0              0

inewg igridc is            js ks ie je ke
0             0               0            0         0              0             0           0

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4         4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1    0.3333     0.3333 0.3333

grid       nbci0     nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1             1               1             1        1             3             1            0

i0:    grid  segment       bctype jsta jend ksta kend ndata
1             1         1002             0           0             0             0            0

idim:grid segment       bctype jsta jend ksta kend ndata
1             1         1002             0           0             0             0            0 

j0:    grid  segment       bctype ista iend ksta kend ndata
1             1         1003             0           0             0             0            0

jdim:grid segment       bctype ista iend ksta kend ndata
1             1         1003             0           0             0             0            0

k0:   grid  segment       bctype ista iend jsta jend ndata
1         1             0               0             0         0             1           37            0
1         2       2004               0             0            0           37         237            2

tw/tinf cq
0.            0.
1             3               0             0        0         237         273            0

Boundary 
conditions
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Problem Formulation and Setup
Blocking and boundary conditions

kdim:grid segment      bctype ista iend jsta jend ndata
1               1         1003             0        0                0              0              0

mseq mgflag iconsf mtt ngam
1               1              0              0     2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3 0.3 0            0.3           0.3 0.3

ncyc mglevg nemgl nitfo
2000              3               0              0

mit1         mit2          mit3          mit4 mit5  ... 
1              1               1               

1-1 blocking data:
nbli

1
number         grid           ista jsta ksta iend jend kend isva1   isva2

1              1              1               1     1              2            37               1         1 2
number         grid           ista jsta ksta iend jend kend isva1   isva2

1             1               1           273       1              2          237               1         1    2
patch interface data:

ninter
0

plot3d output:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0               1               1     1              1           999              1         1   999     1
movie

0
print out:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1              0               1           1           1              1           999              1   1       999     1

control surfaces
ncs

0
grid          ista iend jsta jend ksta kend iwall inorm

Blocking
data
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Problem Formulation and Setup
Blocking and boundary conditions

For this example, format of the blocking data in the input file:

1-1 blocking data:
nbli

1
number     grid      ista jsta ksta iend jend kend isva1     isva2

1         1          1          1           1     2         37            1           1           2
number    grid       ista jsta ksta iend jend kend isva1     isva2

1         1          1       273          1       2        237           1           1           2

Number of the blocking data line

Number of the block (in the present 
example there is only 1 block)

Number of lines of blocking data
No. of lines
in each data
must equal nbli

Note:  The text cards must be present, but the text within those lines
is arbitrary, and is for user information only.  All lines with data are in free 
field format throughout the input file.
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Blocking data
1-1 blocking data:

nbli
1

number     grid      ista jsta ksta iend jend kend isva1     isva2
1         1          1          1           1     2         37            1           1           2

number    grid       ista jsta ksta iend jend kend isva1     isva2
1         1          1       273          1       2        237           1           1           2

j – start
indices

j – end
indices

i – start
indices

i – end
indices

Because this is a volume grid, the blocking will 
always define a two-dimensional interface in index 
space

First index variation
on both sides is in the 
i-direction

Second index variation
on both sides is in the 
j-direction
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Consider a second example of a 2D airfoil using two blocks to compose a
C-grid. Block 1 has dimensions 2x93x5. Block 2 has dimensions 2x269x93

j=1j=33
(t.e.)

j=233
(t.e.)

j=
269

Block boundary
k=1k=5

j=
265  

j=
265

Block 1

Block 2
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Blocking data

1-1 blocking data:

nbli
3

number     grid      ista jsta ksta iend jend kend isva1     isva2
1         1          1          1           1     2           1            5           1           3
2         2          1          1           1     2         33            1           1           2
3         1          1          1           1     2         97            1           1           2

number    grid       ista jsta ksta iend jend kend isva1     isva2
1         2          1       269          1       2        265           1           1           2
2         2          1       265          1       2        233           1           1           2
3         2          1          1           1     2            1         97           1           3

3 blocking data
sets now

k-index of 
block 1 now
varies with 
the j-index of
block 2

A new blocking boundary appears that previously did
not exist
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Blocking and boundary conditions

Blocking faces require corresponding boundary condition data

In the first example above, the blocking interface is at the k=1 boundary.  
Therefore, the boundary condition data for that blocking interface is in the 
‘k0’ boundary data.

k0:   grid   segment    bctype ista iend jsta jend ndata
1              1             0           1         2 1         37            0

.

.

.
1              3             0           1   2       237       273          0

Boundary condition type
for a blocking interface is 0
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CFL3D will stop if the number of grid points across a blocking 
interfaces does not match.  

Suppose the following blocking data had been specified for example 1 above:

number     grid      ista jsta ksta iend jend kend isva1     isva2
1         1          1          1           1     2         35            1           1           2

number    grid       ista jsta ksta iend jend kend isva1     isva2
1         1          1       273          1       2        237           1           1           2

Execution will terminate with the following error message at the end of the file 
‘precfl3d.out’:

.

.
the limits of ind2 are not the same for both sides for 1:1 plane 1

Erroneous
jend value
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CFL3D also checks the input connection data by computing the geometric 
mismatch between both sides of the interface.  A true 1-1 interface will have 
zero (machine zero) mismatch.  Any mismatches larger than ε (where ε is 
the larger of 10-9 or 10x(machine zero)) will cause a warning message.

Example of the output in ‘cfl3d.out’:

j=   1    1-1 blocking                          type       0     i=  1,  31 k=137,   69
connects to j =  1 of block  2
blocking check....geometric mismatch =  0.2166272E-03
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Example of possible boundary condition segments on the k0 face. Suppose 
that the k0 face below represents the surface of a wing.  

j=4

j=1
i=5i=1
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At the unshaded cells, it is desired to apply a heated wall boundary condition, while at 
the shaded cells it is desired to apply an adiabatic wall boundary condition.  One way 
to accomplish this objective is to divide the boundary into the segments shown.  The 
CFL3D input file would have input that looks like this:

k0:   grid   segment    bctype ista iend jsta jend ndata
1               1      2004             1           5            1             2               2

tw/tinf cq
1.60000   0.00000 

1               2      2004             1           3            2             4               2
tw/tinf cq

1.60000   0.00000 
1               3      2004             3           5            2             4               2

tw/tinf cq
0.00000   0.00000

Note that for segment 1, for instance, the grid points i = 1 to 5, j = 1 to 2 define the 
boundary of the cells at which the condition type is to be applied.  

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3
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Setting ista = iend = 0 and/or jsta = jend = 0 is a shorthand way of specifying the entire 
range.  In other words, an alternate boundary condition input with identical outcome 
is:

k0:   grid   segment    bctype ista iend jsta jend ndata
1               1      2004             0           0            1             2               2

tw/tinf cq
1.60000   0.00000 

1               2      2004             1           3            2             4               2
tw/tinf cq

1.60000   0.00000 
1               3      2004             3           5            2             4               2

tw/tinf cq
0.00000   0.00000

j=1

j=4

i=1 i=5

Segment 1

Segment 2 Segment 3
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Blocking and boundary conditions

The following 1000 series boundary conditions are available:

bctype boundary condition
1000 free stream
1001 general symmetry plane
1002 extrapolation
1003 inflow/outflow
1005 inviscid surface
1006 inviscid surface (using normal momentum)
1008 tunnel inflow
1011 singular axis – half-plane symmetry
1012 singular axis – full plane
1013 singular axis – partial plane

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions
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The following 2000 series boundary conditions are available:

bctype boundary condition
2002 specified pressure ratio
2003 inflow with specified total conditions
2004 no-slip wall
2005 periodic in space
2006 set pressure to satisfy the radial equilibrium equation
2007 set all primitive variables

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions
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The following 2000 series boundary conditions are available:

bctype boundary condition
2008 user specifies density and velocity components, 

pressure extrapolated from interior
2009 sets total p and total T inflow, pressure extrapolated from

interior
2014 user specifies transpiration through the boundary
2018 user specifies temperature and momentum components, 

pressure extrapolated from interior
2028 user specifies frequency and maximum momentum 

components, density and pressure extrapolated 
2102 pressure ratio specified as a sinusoidal function of time

Refer to the Version 5.0 Manual and Version 6.0 web page for more information on these
boundary conditions
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Boundary condition 1000  - Free stream.   Extrapolation points just outside the 
boundary are set to initial free stream values, which are:

γρ

βα
β

βα
ρ

/

cossin
sin

coscos
0.1

2
initialinitialinitial

initial

initial

initial

initial

ap

Mw
Mv

Mu

=

=
−=

=
=

∞

∞

∞
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Boundary condition 1001  - General symmetry plane.   Suppose we wish to 
simulate a 3D wing using the half wing shown.  If only one type of maneuver is
performed (i.e. about x-y plane,  x-z plane or y-z plane only) the symmetry plane 
boundary condition can be used.

General symmetry 
plane
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Boundary condition 1002  - Extrapolation.   Ghost points outside the flow field 
domain are extrapolated from the interior.

Boundary condition 1003  - Inflow/Outflow.   This condition uses Riemann 
invariants to calculate inflow and outflow at the boundary cell face. It effectively
Sets total pressure. 

Boundary condition 1005  - Inviscid surface.  Velocity components normal to the 
Surface are set to zero. Density and pressure gradients are set to zero.

Boundary condition 1006  - Inviscid surface.   Similar to b.c. 1005 except that the 
Normal momentum equation is used to obtain wall pressure.  Generally results in 
a smoother solution near an inviscid surface.

Boundary condition 2004  - No slip wall.   Viscous boundary conditions are set at 
Surface cell face, i.e. V = 0.
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Inflow/outflow, 1003

Inflow/outflow, 1003

extrapolation, 1002
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Boundary condition 1005:  Inviscid surface

.

.

.
i0:    grid   segment    bctype ista iend jsta jend ndata

1               1      1005             1           5            1             2               0
1               2            0             1        3            2             4               0

idim:grid segment    bctype ista iend jsta jend ndata
.
.
.
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Note that the b.c. 1005 has no auxiliary data, while the b.c. 2004 has two 
additional lines

.

.
k0:   grid   segment    bctype ista iend jsta jend ndata

1               1      1005             1           5            1             2               0
.
.

…versus…
.
.

k0:   grid   segment    bctype ista iend jsta jend ndata
1               1      2004             1           5            1             2               2

tw/tinf cq

1.60000   0.00000

Specifies no
additional data 
entries

Specifies two
additional auxiliary
data entries 
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• Series 1000 boundary conditions require no auxiliary data
• Number of auxiliary data entries for series 2000 boundary conditions

are shown below

b.c. type No. of auxiliary
data

2002 1
2003 5
2004 2
2005 5
2006  4
2007 5*
2008 4*
2009 4*
2014 3
2016 7
2018 4*
2028 4*
2102 4

*  Means turbulence data can also be specified, adding either 1 or 2 additional aux. data inputs

See the CFL3D version 5.0 manual and CFL3D Version 6 web page for 
discussion of these boundary conditions
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Example of a boundary condition with 5 auxiliary data entries: 2003  -
“Engine inflow”, inflow with specified total conditions:

.

.
k0:   grid   segment    bctype ista iend jsta jend ndata

1               1      2003             1           5            1             2               5
Mach        Pt/Pinf Tt/Tinf Alphae Betae
0.30          4.000   1.1755          0.0         0.0

.

.
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Input data so far for the 2D airfoil using a single block C-grid
.
.
.

grid     nbci0   nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1           1            1          1     1            3            1             0

i0:     grid    segment    bctype jsta jend ksta kend ndata
1              1         1002           0 0           0          0            0

idim: grid    segment    bctype jsta jend ksta kend ndata
1              1         1002           0 0           0          0            0

j0:     grid   segment     bctype ista iend ksta kend ndata
1              1         1003           0 0           0          0            0

jdim: grid   segment     bctype ista iend ksta kend ndata
1              1         1003          0          0 0          0            0

k0:    grid   segment     bctype ista iend jsta jend ndata
1               1              0          0          0           1        37            0
1               2        2004           0 0         37      237            2

tw/tinf cq
0.            0.          
1              3             0           0          0      237      273             0

kdim: grid   segment    bctype ista iend jsta jend ndata
1              1        1003          0  0          0          0             0

.

.

.
1-1 blocking data:

nbli
1

number    grid    ista jsta ksta iend jend kend isva1   isva2
1        1        1        1        1         2     37          1         1          2

number    grid    ista jsta ksta iend jend kend isva1   isva2
1        1        1    273        1         2     237          1         1          2

.

.

Boundary condition
data

Blocking data

i-boundary data

j-boundary data

k-boundary data

Number of k0 
segments
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Input/output file specifications

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

Grid file (Input)      (Unit 1)  

Plot3D output for the grid and q-array   (Units 3 and 4)

Main CFL3D output    (Unit 11)
Flow field residual history
Turbulence model residual history

Flow field, flow field and surface data print out file

Restart file (Input and Output)       (Unit 2)  

Some of the key input, output files:
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Input/output file specifications

• These names can be changed by the user.  
• Input/output redirects are permitted. (e.g.  ../../grid.bin or 

./cflout/cfl3d.out)
• Additional files are printed out not contained in this list.  (e.g. 

precfl3d.out, precfl3d.error, cfl3d.error, cfl3d.subit_res and 
cfl3d.subit_turres)  These files cannot be renamed or redirected

• The restart file name that is read at the start of the computation is 
the same name used for output at the end.  Scripting that saves 
restart files to another name will be required if the user wishes to 
save the input restart.
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Navigating diagnostic output

Diagnostic output:
• Initial input syntax and completeness are checked in the 

preprocessor ‘precfl3d’.  This is an initial step automatically 
performed by CFL3D.  Output from this check will be in the 
files ‘precfl3d.error’ and ‘precfl3d.out’.  Input errors will cause 
the output in ‘precfl3d.out’ to stop at the line at which the error 
occurred.  Often informative diagnostics will be output there.

• When the checker ‘precfl3d’ has determined that the input is
properly configured, the top of ‘cfl3d.out’ will show the input 
values it has read.

• Other checks (e.g. grid dimension, blocking, incompatibility of 
a restart file) are performed in ‘cfl3d’.  Error output including 
the suspected cause of the termination will be found in 
‘cfl3d.error’.  Sometimes additional insight into the cause of 
the error can be found by checking the main output in  
‘cfl3d.out’ although frequently there is little additional 
diagnostic output in ‘cfl3d.out’ if the code terminates.  
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Title line and condition data

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha      beta      ReUe Tinf,dR ialph ihstry
0.753       1.10        0.0    5.7567     460.0          0           0

sref cref bref xmc ymc zmc
1.0        1.0 1.0 0.075        0.0        0.0

dt irest iflagts fmax iunst cfl_tau
-2.0           0            0          1.0           0        5.0

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1               1              1       1000           0              1             1          -2

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0               0             1       0              0             5

idim jdim kdim
2           273            93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0             0               0            0         0              0

inewg igridc is            js ks ie je ke
0             0               0            0         0              0             0           0

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4         4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1    0.3333     0.3333 0.3333

grid       nbci0     nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1             1               1             1        1             3             1            0

i0:    grid  segment       bctype jsta jend ksta kend ndata
1             1         1002             0           0             0             0            0

idim:grid segment       bctype jsta jend ksta kend ndata
1             1         1002             0           0             0             0            0 

j0:    grid  segment       bctype ista iend ksta kend ndata
1             1         1003             0           0             0             0            0

jdim:grid segment       bctype ista iend ksta kend ndata
1             1         1003             0           0             0             0            0

k0:   grid  segment       bctype ista iend jsta jend ndata
1         1             0               0             0         0             1           37            0
1         2       2004               0             0            0           37         237            2

tw/tinf cq
0.            0.
1             3               0             0        0         237         273            0

We will now
focus on these
and subsequent
lines
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Title line and condition data

NLR7301 airfoil, cfl3d type C-grid
Xmach alpha      beta      ReUe Tinf,dR ialph ihstry
0.753       1.10        0.0    5.7567     460.0          0           0

Condition title line

Condition data
line

Free-stream 
temperature, 
degrees Rankine

ialph – indicator to determine whether angle of attack is measured in the 
x-z plane or the x-y plane

ihstry – determines which variables are to be tracked for 
convergence history.  Default is Cl, Cd, Cy (or Cz), Cm.

Input of ReUe (Reynolds number) requires some additional explanation….

Angle of attack, Deg.

Sideslip, Deg.
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Calculation of Reue

Reference lengthRecall the nondimensionalizations:
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Calculation of Reue

Calculation of Reue

666
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Example:  Suppose we have a grid that is in inches, and we wish to retain that 
length scale so that the grid remains compatible with a finite element
model of the wing structure that is also in inches.  Suppose the 
Reynolds number is 1 million based on chord length of 20 inches.

Set                     , then                              Reue 05.,000,50)/~(ReRe1~
~ ==== cLinchL RcLR R

Reue is the Reynolds number per unit grid length in millions
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Reference data input

sref cref bref xmc ymc zmc
1.0        1.0 1.0 0.075        0.0        0.0

Reference area used
in calculation of force 
coefficients, in grid 
units

Reference length used
in calculation of pitch
moment coefficient, in 
grid units

Reference length used
in calculation of roll
moment coefficient, in 
grid units

Center for moment
calculations, in grid units
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Steady solution cycling input

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha      beta      ReUe Tinf,dR ialph ihstry

0.753       1.10        0.0    5.7567     460.0          0           0
sref cref bref xmc ymc zmc
1.0        1.0 1.0 0.075        0.0        0.0
dt irest iflagts fmax iunst cfl_tau

-2.0           0            0          1.0           0        5.0

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1               1              1       1000           0              1             1          -2

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0              0            1         0              0             5

idim jdim kdim
2           273            93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0             0               0            0         0              0

inewg igridc is            js ks ie je ke
0             0               0            0         0              0             0           0

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4         4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1    0.3333     0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam
1               1              0              0       2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3           0.3          0            0.3           0.3           0.3                  

ncyc mglevg nemgl nitfo
2000              3               0              0
mit1         mit2          mit3          mit4      mit5  ... 

1              1               1               

We will now want to 
focus on these 
three lines
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Steady solution cycling input

Time step parameters:

dt irest iflagts fmax iunst cfl_tau
-2.0           0            0          1.0           0        5.0

Number of time step advances, and time accuracy:

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1              1              1       1000  0              1            1         -2

Cycle control:

ncyc mglevg nemgl nitfo
2000              3               0              0

CFL number
(for steady run)

Number of 
time stepsNumber of cycles
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Steady solution cycling input

dt irest iflagts fmax iunst cfl_tau
-2.0             0              0          1.0             0     5.0

.

.
ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita

1              1              1      1000             0              1            1         -2
.
.

ncyc mglevg nemgl nitfo
2000             3               0         0

Note:  
– when dt < 0, local time stepping is used, i.e.                    .  This is used

for converging a steady state solution.  For steady state computations

where ∆r is a measure of local grid spacing and ∆τ is the local pseudo 
time step size.

– cfl_tau is not used when dt < 0.   The value input for that parameter is  a placeholder. 
– iunst is set to 0 in the code when dt < 0. 
– ntstep is set to 1 in the code when dt < 0. 
– ncyc controls the number of steady solution cycles computed.
– Values of dt of -2.0 to -10.0 are typical.  Lower values will be required for a 

stiffer problem.

dtCFL =

rCFL ∆⋅=∆τ
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Grid sequencing

Grid sequencing can and should be used to accelerate convergence to a
steady state solution.  The following input sequences through three grid levels.

.

.
ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)

2              0              0            1             0              0             5

.

.

.
mseq mgflag iconsf mtt ngam

3               1              0              0          2
issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)

0            0.3           0.3 0.3 0            0.3           0.3 0.3
ncyc mglevg nemgl nitfo
2000              1               0              0
1000              2               0              0
500              3               0              0
mit1         mit2          mit3          mit4      mit5  ... 

1                  
1              1      
1              1              1     

.

.

.

Sequencing from coarsest
to finest grid level, mseq
lines required

Number of sequence levels

mseq lines required

Number of coarser levels to be created
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Grid sequencing output

The following grid level information will be found 
in the cfl3d.out on the completion of the 3D 
single block C-grid airfoil computation:

.
.

reading grid   1 of dimensions (I/J/K) :   2 273  93
creating coarser block   2 of dimensions (I/J/K) :   2 137  47
creating coarser block   3 of dimensions (I/J/K) :   2 69  24

.

.

.
***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    1
level top =  1
level bottom =  1
number of global grid levels =  1
lglobal=  1

.

.

.

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block   3  to   finer block  2 (grid   1)
jdim,kdim,idim (finer grid)=  137   47    2
jj2,kk2,ii2    (coarser grid)=    69   24    2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    2
level top =  2
level bottom =  1
number of global grid levels =  2
lglobal=  2

.

.

.

Coarsest to
mid level

Because ncg = 2, two 
coarser levels created
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Grid sequencing output

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block   2  to   finer block   1 (grid   1)
jdim,kdim,idim (finer grid)=  273   93    2
jj2,kk2,ii2     (coarser grid)= 137   47    2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 3 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    3
level top =  3
level bottom =  1
number of global grid levels =  3
lglobal=  3

Mid to finest level
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Grid sequencing 

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0              0            1            0              0             5

.

.
idim jdim kdim

2           273            93
.
.  

.
mseq mgflag iconsf mtt ngam

3               1              0              0          2
issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)

0            0.3           0.3 0.3 0            0.3           0.3 0.3
ncyc mglevg nemgl nitfo

2000              1               0              0
1000              2               0              0

500              3               0              0
mit1         mit2          mit3          mit4      mit5  ... 

1                  
1              1      
1              1              1    

Note:
– The number of grid levels that will have been created are the coarser levels (ncg) plus the 

finest level.  Therefore, mseq must be equal to or less than ncg + 1.   Setting mseq higher than 
this will result in a termination and an error message in precfl3d.out.

– The permissible value of ncg will depend on the dimensions of the grid.  It is usually good to 
have three to four possible levels of multi-grid.  For example, since four levels of multi-grid
are possible with this grid, we could have set ncg = 3.

These dimensions support up to
four multigrid levels.   See version 5.0
manual for a table of multigridable
dimensions.  Note that idim is not
multigridded for a 2D grid.
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Grid sequencing 

Note:
– Many more cycles will be done at the coarser levels.  The 

computing required for a 3D grid will be a factor of 8 cheaper at 
each coarser level.  For the present problem, the coarsest level
would be 64 times cheaper than the finest level if this had been a 
3D grid. Since it is a 2D grid it will be 16 times cheaper. 

– It is usually good to completely converge the coarser levels 
before proceeding to the finer level.  However, some problems 
will not compute well at a coarse level, but will compute at a finer 
level.

– Mglevg is always starting from the finest level … as the following 
example will show…
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Grid sequencing 

Example:  We wish to compute on only the two coarser levels with the 
grid used in the previous example. The following input has been set up:

.

.
ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)

2              0              0            1             0              0             5

.

.

.
mseq mgflag iconsf mtt ngam

2               1              0              0          2
issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)

0            0.3           0.3 0.3 0            0.3           0.3 0.3
ncyc mglevg nemgl nitfo
2000              1               0              0
1000              2               0              0
mit1         mit2          mit3          mit4      mit5  ... 

1                  
1              1      

.

.

.

Value of ncg is unchanged, but
now set mseq = 2

You would expect this to 
compute on the two coarsest
levels, but it actually computes
on the second and finest levels…
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Grid sequencing 

…Here is what is actually output in cfl3d.out:

***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    1
level top =  2
level bottom =  2
number of global grid levels =  1
lglobal=  2

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block   2  to   finer block  1 (grid   1)
jdim,kdim,idim (finer grid)=  273   93    2
jj2,kk2,ii2     (coarser grid)= 137   47    2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    2
level top =  3
level bottom =  2
number of global grid levels =  2
lglobal=  3

Computations performed on the 
middle and finest grids
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Grid sequencing at coarsest levels only

Here is how to compute only on the two coarsest levels:
.
.

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0              0            1             0              0             5

.

.

.
mseq mgflag iconsf mtt ngam

3               1              0              0          2
issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)

0            0.3           0.3 0.3 0            0.3           0.3 0.3
ncyc mglevg nemgl nitfo
2000              1               0              0
1000              2               0              0

0              3               0              0
mit1         mit2          mit3          mit4      mit5  ... 

1                  
1              1   
1              1              1   

.

.

.

The finest level is included but with
zero cycles
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Grid sequencing at coarsest levels only

….and here is the output:
***** BEGINNING TIME ADVANCEMENT, iseq = 1 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    1
level top =  1
level bottom =  1
number of global grid levels =  1
lglobal=  1

.

.

.

***** BEGINNING SEQUENCING TO FINER LEVEL *****

interpolating solution on coarser block   3  to   finer block  2 (grid   1)
jdim,kdim,idim (finer grid)=  137   47    2
jj2,kk2,ii2     (coarser grid)=   69   24    2
interpolating turb quantities from coarser to finer block

***** ENDING SEQUENCING TO FINER LEVEL *****

***** BEGINNING TIME ADVANCEMENT, iseq = 2 *****

steady-state computations

***** BEGINNING MULTIGRID CYCLE *****

iseq=    2
level top =  2
level bottom =  1
number of global grid levels =  2
lglobal=  2

Computations performed on the 
coarsest and middle levels



83

Setting up a Steady Run
Grid sequencing at coarsest levels only

Why is it sometimes valuable to compute on 
the coarser levels only?

– Cost effectiveness of coarser levels
– Sometimes it is not possible to converge the finest level
– Many times you will want to compute unsteady solutions on 

coarser levels only, especially when debugging. This requires 
the coarser level  as the steady starting point.
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Ramping up dt

Sometimes it is useful for stiff problems to ramp up the 
time step size.   This is accomplished with the following input:

dt irest iflagts fmax iunst cfl_tau
-2.0           0       1000         5.0           0        5.0

dtending = fmax * dtinitial

dtinitial

In this example, the final CFL value of 10 is obtained after 1000 cycles.  Note
that this counter is reset with each restart.  Therefore, dtinitial will have to be 
reset to the dtending of the previous run.

No. of cycles over which time step ramping 
occurs
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Additional input

dt irest iflagts fmax iunst cfl_tau
-2.0             0         1000         5.0              0       5.0

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1              1              1       1000          0              1             1        -2

irest = 0  - do not read restart
irest = 1  - read restart file

No. of cycles (or time steps)
between restart file writes

No. of grid blocks to be
read from the grid file

Controls checks for 
negative values.
Usually set to 0. 

i2d = 0  - 3D case
i2d = 1  - 2D case
i2d =-1  - 2D case with

far-field vortex
correction

Parameter controlling
accuracy of unsteady 
solution
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Additional input

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0              0            1         0              0            5 

idim jdim kdim
2           273            93

This card repeated ngrid times

This card repeated ngrid times

Parameters controlling
level of turbulence modeling
in the i, j, k directions

Flag for residual/update
usually set to 0

Flag controlling force computations on block
Faces.  Format is IJK,  e.g. 100 calculates force
On solid i=1 surfaces, 10 calculates force on solid
j=1 surfaces, etc…. See version 5 manual for more

Embedded mesh
flag, usually 0
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Turbulence model input

There are more than 13 turbulence models available, but these are the 
most common turbulence model parameter values:

0 - inviscid
1 - laminar
3 - turbulent, Baldwin-Lomax with Degani-Schiff 

option (not recommended)
5 - turbulent, Spalart-Allmaras model
6 - turbulent, Wilcox k-ω
7 - turbulent, k-ω SST (Menter’s version)

13 - nonlinear EASM k-ε model
14 - nonlinear EASM k-ω model

See the CFL3D Version 5.0 manual (Appendix H) and the CFL3D Version 6 web page 
(under `New Features’) for descriptions of these and other models.  See also under the 
‘Keywords’ discussion in these notes for parameters that turn turbulence model features on.
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Turbulence model 

Several key notes on turbulence models:

1. If ivisc(m) < 0, a wall function is employed
2. Thin-layer viscous terms (laminar or turbulent) can be included in the i,j or k

directions separately or combined.  Cross-derivatives are not included. For the 
Baldwin-Lomax model, terms are allowed simultaneously in two directions only,
either j-k or i-k.

3. Using the Baldwin-Lomax model with multi-zonal grids, wall distances are 
calculated only within a given zone.

4. It is preferable to let k be the primary viscous direction and i be secondary viscous 
direction.

5. The minimum distance function smin is computed from viscous walls only, not 
inviscid walls.
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Turbulence model 

6. Note that the field equation turbulence models may or may not transition to 
turbulent flow.  Whether they transition will largely be determined by the free 
stream value of turbulence.  Free stream turbulence level can be set in the 
key word input.

7. There are several places in which the turbulence level can be checked
– There is an option allows the output of turbulence quantities in the 

plot3d file.
– The file ‘cfl3d.prout’ contains the value of the turbulent viscosity.  This is 

shown in the next slide.

See the CFL3D User’s Manual, Version 5.0, Section 3.7 for more complete discussion
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Turbulence model output

The top of the ‘cfl3d.prout’ file is shown here:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach     alpha      beta      ReUe Tinf,dR time

0.82000   0.00000   0.00000 0.236E+07 486.00000   0.03839

BLOCK   1  (GRID   1)     IDIM,JDIM,KDIM=   73  345   73
NOTE: endpts may not be reliable

I    J   K           X                  Y                    Z                   U/Uinf V/Vinf W/Winf P/Pinf T/Tinf MACH               cp                tur. vis.
1   1   1  0.70000E+01  0.00000E+00  0.18698E-09  0.10000E+01 -0.38013E-18  0.72322E-13  0.10000E+01  0.10000E+01 0.82000E+00  0.50654E-07  0.90000E-02
1   2   1  0.68895E+01  0.00000E+00  0.18866E-09  0.10000E+01 -0.16458E-16 -0.14259E-15  0.10000E+01  0.10000E+01 0.82000E+00  0.50654E-07  0.90000E-02

.

.

Data lines will be printed out for all flow field points specified by the user in the 
‘print out’ portion of the input file.

Turbulent viscosity
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Miscellaneous input

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0             0               0            0        0              0

inewg igridc is            js ks ie je ke
0             0               0            0        0              0             0           0

Lower and upper i,j,k indices of laminar
region

This card repeated ngrid times

This card repeated ngrid times

Embedded mesh specifications.  Zero if
no embedded mesh.  See version 5.0 
manual for more information
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Miscellaneous input

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4       4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1   0.3333    0.3333 0.3333

This card repeated ngrid times

This card repeated ngrid times

Spatial differencing 
in the i,j,k directions.
ifds = 1 – flux-difference

splitting (Roe’s)
(recommended)

Spatial differencing 
parameter for Euler 
fluxes in the i,j,k 
directions.  
rkap0 = 1/3 - upwind-
biased third order 
(recommended)

Flux limiter flag in the i,j,k directions.
iflim = 3 was recommended in Version 5.0
iflim = 4 is recommended in Version 6.0
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Input for time advancement

input/output files:
grid.bin
plot3dg.bin
plot3dq.bin
cfl3d.out
cfl3d.res
cfl3d.turres
cfl3d.blomax
cfl3d.out15
cfl3d.prout
cfl3d.out20
ovrlp.bin
patch.bin
restart.bin

NLR7301 airfoil, cfl3d type grid
Xmach alpha      beta      ReUe Tinf,dR ialph ihstry

0.753       1.10        0.0    5.7567     460.0          0           0
sref cref bref xmc ymc zmc
1.0        1.0 1.0 0.075        0.0        0.0
dt irest iflagts fmax iunst cfl_tau

.05           1            0          1.0           0 5.0

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1               1              1       1000           0              1             1          -2

ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)
2              0              0            1         0              0             5

idim jdim kdim
2           273            93

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0             0               0            0         0              0

inewg igridc is            js ks ie je ke
0             0               0            0         0              0             0           0

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4         4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1    0.3333     0.3333 0.3333

.

.

.

mseq mgflag iconsf mtt ngam
1               1              0              0       2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3           0.3          0            0.3           0.3           0.3                  

ncyc mglevg nemgl nitfo
4              3               0              0

mit1         mit2          mit3          mit4      mit5  ... 
1              1               1   

We will again 
focus on these 
three lines
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Input for time advancement

Time step parameters:

dt irest iflagts fmax iunst cfl_tau
.05           1            0          1.0           0 5.0

Number of time step advances, and time accuracy:

ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita
1              1              1       1000  0              1         100         -2

Iterative control:

ncyc mglevg nemgl nitfo
4              3               0             0

Non-dimensional time step size

Number of 
time steps

Number of sub-iterations

Parameter 
controlling time
accuracy and 
dual time stepping
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Input for time advancement

Order of time-accuracy, dual time scheme flag (ita)

ita = +1 First order accurate in time; physical time term only
(t-TS) method

ita = +2 Second order accurate in time; physical time term only 
(t-TS) method

ita = -1 First order accurate in time; physical time and pseudo 
time term (τ-TS) method

ita = -2 Second order accurate in time; physical time and 
pseudo time term  (τ-TS) method
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Input for time advancement

Note:

• The approximate factorization scheme used to advance the solution in time 
introduces first order errors in time.  Furthermore, if the diagonal version is 
utilized (idiag = 1), additional errors of order ∆τ are introduced.  Sub-iterations 
can be used to drive these factorization errors to zero.  Therefore, if a formally 
second-order (in time) solution is desired, sub-iterations must be used.

• The inclusion of a pseudo time term increases (often dramatically) the 
maximum allowable time step one can take for a particular problem.  However, 
sub-iterations (ncyc > 1) are therefore mandatory and multi-grid is highly 
recommended. 

• Larger time steps imply greater error, therefore second order is recommended.
• You will almost never want to use the t-TS method of time stepping.
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Equations for τ-TS time advancement

Non-dimensional
time step increment

Sub-iteration 
index
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Equations for t-TS time advancement

The pseudo time terms are omitted for t-TS time
advancement:

)())(1(

1

1
m

nmn

m

QR
tJ

QQ
tJ

Q

QCBAI
tJ

+
∆

−+
−

∆
∆

=∆⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛

∆
+

− φφ

δδδφ
ζηξ

Non-dimensional 
time step increment



99

Setting up an Unsteady Run
Case study: The t-TS and τ-TS schemes, oscillating spoiler

The solution using the t-TS 
scheme blows up even at a  
very small time  step size

From: Bartels, R. E., “Mesh Strategies for Accurate 
Computation of Unsteady Spoiler and Aeroelastic
Problems,” Journal of Aircraft, Vol. 37, No. 3, pp. 
521-525.
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Speeding up execution time

idiag(i)     idiag(j)     idiag(k)    iflim(i)      iflim(j)     iflim(k)
1             1               1            4       4             4

ifds(i)       ifds(j)       ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1             1               1   0.3333    0.3333 0.3333

Parameters controlling the form
of the Jacobian matrices used on 
the left hand side of the equations

Setting idiag(i), idiag(j), idiag(k) to 1 results in a very efficient trigiagonal
inversion of the left hand side of the equations in the i, j and k directions.
However, be aware of the implications of setting this …..
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Diagonalized versus full Jacobian matrices
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idiag controls the form of the matrices A, B, C on the 
left hand side only. If idiag = 0, the full 5x5 matrix is 
used.  If idiag = 1,  the matrix is diagonalized (i.e. 
Very efficient scalar tridiagonal inversion of the left 
hand side of this equation).

Since                 when the solution converges, setting idiag = 1 does not 
affect accuracy, … assuming the solution has been adequately converged.
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Setting up an Unsteady Run
Sizing ∆t, number of subiterations

Recall the non-dimensionalization of time:

RL
att ~
~~

∞∆
=∆

The reference length        will be determined by the grid.  For instance, if
a wing with a 5 inch physical chord length is modeled with a grid that has 
a non-dimensional  chord length of 5, then 

RL~

inchinchesLR 1
5

5~ ==

Note that in this case speed of sound,        must be in inches/second.∞a~



103

Setting up an Unsteady Run
Sizing ∆t, number of subiterations

• One criteria for time step sizing is the time scale required to resolve a 
phenomena at some frequency.  Another is the number of time steps
for a flow field particle to pass over a chord length. Consider 100 time 
steps per cycle or 100 time steps to pass over a chord length as the 
absolute minimum, which ever is smaller. 

• The time step size and the number of sub-iterations may have to 
be set lower/higher respectively by either accuracy or robustness 
requirements.  Short test runs should be performed to ensure
adequate convergence.



104

Setting up an Unsteady Run
Sizing ∆t, number of subiterations

• Indicators that the time step size is too large:
• The solution converges very slowly or does not converge at all.
• The solution simply blows up.  
• There are large numbers of negative turbulence parameter values

in the file ‘cfl3d.subit_turres’ the number of which is not converging toward
zero at the end of each time step.

• Indicator that the number of sub-iterations is too small:
• The force coefficients have not leveled out to an acceptable 

convergence level.
• The residuals have dropped only by an insufficient magnitude. This 

can also be a sign that the time step is too large.
• The solution has been converging, but eventually blows up or 

starts to gradually diverge.
• Note that these symptoms can also be due to problems with the grid,   

boundary conditions or turbulence model, so first ensure these issues 
are settled.
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Setting up an Unsteady Run
Sub-iterative output – checking convergence

The file ‘cfl3d.subit_res’ contains the following sub-iterative output

subit    log(subres)           cl                      cd                    cy cmy

1  -0.44098E+01  -0.56246E-02   0.29632E+00   0.00000E+00   0.14528E-02
2  -0.45238E+01   0.28737E-01  -0.12683E-01    0.00000E+00  -0.50177E-02
3  -0.49884E+01   0.26860E-01   0.19477E+00   0.00000E+00  -0.47901E-02
4  -0.48541E+01   0.25869E-01   0.80380E-01    0.00000E+00  -0.42342E-02
5  -0.54203E+01   0.26254E-01   0.10470E+00   0.00000E+00  -0.42906E-02
6  -0.53829E+01   0.27267E-01   0.98269E-01    0.00000E+00  -0.44789E-02
7  -0.58126E+01   0.27020E-01   0.10995E+00   0.00000E+00  -0.44088E-02
8  -0.57635E+01   0.26710E-01   0.10469E+00   0.00000E+00  -0.43687E-02
9  -0.60754E+01   0.26657E-01   0.10302E+00   0.00000E+00  -0.43724E-02

10  -0.61285E+01   0.26713E-01   0.10312E+00   0.00000E+00  -0.43877E-02
11  -0.49984E+01   0.26728E-01   0.10431E+00   0.00000E+00  -0.43800E-02
12  -0.56927E+01   0.26415E-01   0.92217E-01    0.00000E+00  -0.42151E-02
13  -0.60126E+01   0.26287E-01   0.83844E-01    0.00000E+00  -0.40628E-02
14  -0.62182E+01   0.26167E-01   0.82317E-01    0.00000E+00  -0.40236E-02
15  -0.65022E+01   0.26110E-01   0.82955E-01    0.00000E+00  -0.40152E-02
16  -0.65972E+01   0.26076E-01   0.83164E-01    0.00000E+00  -0.40164E-02
17  -0.68247E+01   0.26050E-01   0.82959E-01    0.00000E+00  -0.40162E-02
18  -0.68719E+01   0.26052E-01   0.82589E-01    0.00000E+00  -0.40151E-02
19  -0.70916E+01   0.26059E-01   0.82439E-01    0.00000E+00  -0.40141E-02
20  -0.71274E+01   0.26055E-01   0.82404E-01    0.00000E+00  -0.40133E-02

Note that all iterations are output sequentially

ncyc = 10 so there 
are 10 lines output
per time step
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Sub-iterative output– checking convergence

Start of new time step sub-
iterations
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Setting up an Unsteady Run
Sub-iterative output– checking convergence

Force coefficients should be
converged before start of 
next time step
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Setting up an Unsteady Run
Sub-iterative turbulence output

subit log(turres1)        log(turres2)       nneg1       nneg2
1    -0.73658E+01    -0.92553E+01              0           710
2    -0.74563E+01    -0.91092E+01              0             82
3    -0.76424E+01    -0.90767E+01              0               2
4    -0.80379E+01    -0.90899E+01              0               0
5    -0.82466E+01    -0.93470E+01              0               8
6    -0.84600E+01    -0.93751E+01              0             30
7    -0.86186E+01    -0.95757E+01              0             58
8    -0.88672E+01    -0.97150E+01              0             56
9    -0.89497E+01    -0.98376E+01              0             48

10    -0.91579E+01    -0.99516E+01              0             38
.
.
.
.

51   -0.95921E+01    -0.88827E+01         2498         2149
52   -0.95925E+01    -0.90172E+01         2340         2693
53   -0.95509E+01    -0.91643E+01         2124         2603
54   -0.99381E+01    -0.90386E+01         1959         1193
55   -0.98511E+01    -0.91025E+01         2244         1252
56   -0.99244E+01    -0.92361E+01         3529         1393
57   -0.10161E+02    -0.91691E+01         2373         1486
58   -0.10217E+02    -0.91525E+01         1395         1360
59   -0.10304E+02    -0.92210E+01         1266         1460
60   -0.10377E+02    -0.93327E+01         1109         1218

Note that there are a few grid 
points that have negative values
of  k and ω initially…

…however, large numbers of 
negative values of turbulence
model parameters indicate a 
potential problem 

In this case 
ncyc = 10 so there 
are 10 turbulence 
model iterations 
per time step.

Even though the turbulence model appears to be converging well, a large number of 
negative values may mean that the time step size is too large for the turbulence model.  
Usually reducing time step size will fix this problem.

The file ‘cfl3d.subit_turres’ contains the following sub-iterative output
for Menter’s shear stress transport (SST) k-w turbulence model:
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Setting up an Unsteady Run
Multigrid strategies

• Multigrid is a must for unsteady computations.  The following input 
section establishes four multigrid sub-iterations each on three levels, 
the third being the finest:

mseq mgflag iconsf mtt ngam
1               1              0              0     2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3 0.3 0            0.3           0.3 0.3

ncyc mglevg nemgl nitfo
4             3               0              0

mit1         mit2          mit3          mit4      mit5  ... 
1              1               1

Correction and residual
smoothing, typically
not used (issc=issr=0)

Mesh sequencing and
multigrid parameters

Multigrid cycling
parameters

Number of iterations for each 
level, mitL = 1 recommended
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Setting up an Unsteady Run
Multigrid strategies

mseq mgflag iconsf mtt ngam
1               1              0              0  2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3 0.3 0            0.3           0.3 0.3

ncyc mglevg nemgl nitfo
4             3               0              0

mit1         mit2          mit3          mit4      mit5  ... 
1              1               1

Note:
• iconsf is a parameter for setting conservative flux treatment for embedded grids.  For 

most computations it is set to zero.
• mtt is a flag for additional iterations on the up portion of the multigrid.  Recommend 

setting to zero.
• ngam is the multigrid cycle flag.  ngam = 1 sets V-cycle, ngam = 2 sets a W-cycle.  The 

W-cycle is not recommended for overlapped grids.
• mglevg is the number of grids to use in multigrid cycling.  E.g. mglevg = 1 sets the finest 

grid level only, mglevg = 2 sets two grid levels, etc…
• nemgl is set to zero when there are no embedded grids.
• nitfo1 is the number of first order iterations. Zero is recommended.
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Setting up an Unsteady Run
Multigrid strategies

What if you want to compute an unsteady solution using multigrid on 
coarser levels only?  Assume that the steady starting solution has been 
performed on coarser levels only, as we previously discussed.  The 
following input will allow you to perform the unsteady run:

mseq mgflag iconsf mtt ngam
2               1              0              0  2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0            0.3           0.3 0.3 0            0.3           0.3 0.3

ncyc mglevg nemgl nitfo
4             2               0              0
0             3               0              0

mit1         mit2          mit3          mit4      mit5  ... 
1              1
1              1               1

Note that a line with 0 sub-iterations
is included for a 3 level multigrid
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Setting up an Unsteady Run
Multigrid strategies

….and here is the output:
.
.

reading grid   1 of dimensions (I/J/K) :   2 273  93
creating coarser block   2 of dimensions (I/J/K) :   2 137 47
creating coarser block   3 of dimensions (I/J/K) :   2  69 24

.

.

.
reading restart file for block   2  (grid   1)
reading vist3d data from restart file, block    2
reading field eqn turb quantities from restart file, block    2

.

.

. 
***** BEGINNING MULTIGRID CYCLE *****

iseq=    1
level top =  2
level bottom =  1
number of global grid levels =  2
lglobal=  2

The full grid is read, and two
coarser levels created

This is the finest level on 
which computations are 
performed

Restart data is read for 
coarser block 2 only
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Setting up an Unsteady Run
Multigrid strategies

.
.   

interpolating correction from coarser block   3 to   finer block   2 (grid   1)
jdim,kdim,idim (finer grid)=  137   47    2  
jj2,kk2,ii2    (coarser grid)=    69   24    2

.

.
writing restart file for block    2

writing vist3d data to restart file, block    2
writing field eqn turb quantities to restart file, block    2

writing 2nd order time data to restart file, block   2

***** ENDING TIME ADVANCEMENT, iseq = 1 *****

writing plot3d file for JDIM X KDIM =  137 x    47 grid
plot3dg file is an xyz file at grid points
plot3dq file is a    q file at grid points
plot3d files to be read with /mgrid/blank/2d qualifiers

writing printout file for IDIM X JDIM X KDIM =    2 x   137 x 47 grid

Only the coarser level solution
is written to the restart file

Multigrid performed 
on the two coarser levels 
only

Plot3D and print out data
written for coarser level
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User Specified Grid Motion
Overview

CFL3D has the capability to perform computations for prescribed 
surface motion in two ways

1. Prescribed, or user specified rigid grid motion.  In this mode, the entire grid or 
set of grids translates or rotates in a manner prescribed by user input.

2. Prescribed surface motion with deforming mesh.  In this mode, the 
surface(s) prescribed by the user translate or rotate and the mesh
deforms accordingly.

These types of motion are only available when the code is running in 
unsteady mode.
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User Specified Grid Motion
Rigid grid rotation

As an example consider the wing 
shown:

x

z       y

Axis of rotation
defined, in this case,
about an axis in the
Y-direction

The entire grid rotates
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User Specified Rigid Grid Motion
Rigid grid rotation

The following unsteady input file performs 
rotation about the axis shown:
input/output files: 

wbgrid.cfl
plot3dg.bin                                               
plot3dq.bin                                                   
cfl3d.out                                                     
cfl3d.res
cfl3d.turres                                                 
cfl3d.blomax
cfl3d.out15                                                  
cfl3d.prout                                                   
cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach       alpha         beta           ReUe Tinf,dR ialph ihstry

0.82000   0.00000   0.00000 0.236E+07      486.00              1            0
sref cref bref xmc ymc zmc

1.000   1.00000   1.00000 0.25000    0.00000   0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000              0        3000        1.00000            1     2.00000
ngrid nplot3d        nprint nwrest ichk i2d     ntstep ita

1              1              1            1000   0                0            1        -2

Note that iunst = 1 for rigid
translation or rotation 
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User Specified Rigid Grid Motion
Rigid grid rotation

ncg iem iadvance iforce ivisc(i)     ivisc(j)    ivisc(k)
2              0               0             1  5             5             5

idim jdim kdim
73          345             73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0               0               0             0  0             0

inewg igridc is            js ks ie je ke
0               0               0             0  0             0             0            0

idiag(i)      idiag(j)      idiag(k)    iflim(i)      iflim(j)    iflim(k)
1               1               1             3  3             3

ifds(i)         fds(j)        ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1               1               1    0.3333    0.3333 0.3333

grid        nbci0      nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1               1               1             1  1            5              1            0

i0:      grid   segment        bctype jsta jend ksta kend ndata
1               1          1001            1     345             1            73            0

idim:  grid   segment        bctype jsta jend ksta kend ndata
1               1          1002            1     345             1            73            0

j0:      grid   segment        bctype ista iend ksta kend ndata
1               1          1003            1     73             1            73            0

jdim:  grid   segment        bctype ista end         ksta kend ndata
1              1           1003            1     73             1            73            0

k0:     grid   segment        bctype ista iend jsta jend ndata
1              1                 0            1  49             1            33            0
1              2           2004            1     49           33          313            2

tw/tinf cq
0.00000   0.00000

1              3                 0           1   49         313          345            0
1              4                 0         49    73             1          173            0
1              5                 0         49    73         173          345            0

kdim:  grid   segment        bctype       ista        iend      jsta         jend     ndata 
1              1           1003           1      73              1         345            0
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User Specified Rigid Grid Motion
Rigid grid rotation

mseq mgflag iconsf mtt ngam
1              2               1              0      2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0    0.3000      0.3000 0.3000 0    0.3000     0.3000 0.3000

ncyc mglevg nemgl nitfo
8             3               0               0

mit1        mit2         mit3           mit4     mit5  ...
1             1               1

1-1 blocking data:
nbli

2
number         grid          ista jsta ksta iend jend kend isva1   isva2

1             1              1                 1     1          49             33             1           1      2
2             1            49                 1      1          73           173             1           1        2

number         grid          ista jsta ksta iend jend kend isva1   isva2
1             1              1            345        1          49           313             1           1         2  
2             1            49            345         1          73           173             1           1         2

patch interface data:
ninter

0
plot3d output:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1             0              1              49       1           1           345              1           1       1        1

movie
0

print out:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0              1              49       1           1           345              1           1       1        1
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User Specified Rigid Grid Motion
Rigid grid rotation input

control surfaces:
ncs

0
grid         ista iend jsta jend ksta kend iwall inorm

moving grid data - rigid translation (forced motion):
ntrans

0  
lref

grid       itrans rfreq utrans vtrans wtrans
grid     dxmax dymax dzmax

moving grid data - rigid rotation (forced motion):
nrotat

1
lref
1.0

grid       irotat rfreq omegax omegay omegaz xorig yorig zorig
1             2          0.05         0.00        5.00 0.00      0.25     0.00      0.00

grid dthxmx dthymx dthzmx
1           10.           10.           10.

Patched data:
ninter2

0

Rigid translation input. Note that 
ntrans = 0, so that only remaining 
header lines are included.

Rigid rotation input

The following lines must
be included when iunst = 1
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User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing attention on the rigid rotation input:

moving grid data - rigid rotation (forced motion):
nrotat

1
lref
1.0

grid       irotat rfreq omegax omegay omegaz xorig yorig zorig
1             2          0.05         0.00        5.00        0.00      0.25     0.00       0.00

grid dthxmx dthymx dthzmx
1           10.           10.           10.

Number of grid blocks to be 
rotated

Line repeated nrotat times

Line repeated nrotat times

Reference length for reduced frequency
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User Specified Rigid Grid Motion
Rigid grid rotation input

Focusing on the last two lines of input on the last slide:
.
.

grid       irotat rfreq omegax omegay omegaz xorig yorig zorig
1             2            0.05         0.00        5.00        0.00      0.25     0.00       0.00

grid   dthxmx dthymx dthzmx
1           10.             10.           10.

.

.

grid - Grid block to be rotated
irotat - Type of rotation

= 0 - no rotation
= 1 - rotation with constant angular speed
= 2 - sinusoidal variation of angular displacement
= 3 - smooth increase in displacement, 

asymptotically reaching a maximum angle
rfreq - reduced frequency when irotat = 2; growth rate to maximum angular displacement when

irotat = 3
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User Specified Rigid Grid Motion
Rigid grid rotation input

.

.
grid       irotat rfreq omegax omegay omegaz xorig yorig zorig

1             2            0.05         0.00        5.00        0.00      0.25     0.00       0.00
grid   dthxmx dthymx dthzmx

1           10.             10.           10.
.
.

omegax, omegay, omegaz - x,y,z components of rotational velocity when irotat = 1; maximum angular 
displacements about x,y,z-axes when irotat > 1

xorig, yorig, zorig - x,y,z coordinate of origin of the rotational axis

dthymx, dthymx,dthzmx - maximum (absolute) rotational displacement about the x,y,z-axes to be 
allowed for this grid (set dthxmx,dthymx, dthzmx = 0 if no restriction is 
required)
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User Specified Rigid Grid Motion
Rigid grid rotation input

Example of sinusoidal rotational motion irotat = 2:

The rotational displacement (radians) within the code is governed by
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.deg,~
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User Specified Rigid Grid Motion
Rigid grid rotation input

Based on the equations of sinusoidal motion  on the last slide,

Nk
L

t
r

ref=∆

where N is the desired number of time steps per cycle.  Consult Chapter 4
of the Version 5.0 User’s Manual pp. 55-62 for details on all types of 
motion. 
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User Specified Rigid Grid Motion
Rigid grid rotation

The following diagnostic information on the rotation of 
the surface(s) will be printed in ‘cfl3d.out’:

.

.

.
rotating block      1 to new position    
creating coarser block   2 of dimensions (I/J/K) :  37 173  37
restricting grid speeds from finer block   1 to coarser block   2

creating coarser block   3 of dimensions (I/J/K) :  19  87  19
restricting grid speeds from finer block   2 to coarser block   3

.

.

.
writing restart file for block    1 

writing vist3d data to restart file, block    1
writing field eqn turb quantities to restart file, block    1

writing 2nd order time data to restart file, block   1
writing dynamic mesh data to restart file,   block   1

.

.

.

Note that new dynamic mesh data
has been written to the restart file

Grid speed information computed
for moving grid
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User Specified Rigid Grid Motion
Rigid grid translation input

.

.
control surfaces:

ncs
0

grid         ista iend jsta jend ksta kend iwall inorm
moving grid data - rigid translation (forced motion):

ntrans
1  

lref
1.0

grid       itrans rfreq utrans vtrans wtrans
1             2         0.05         0.00        0.00 5.00   

grid     dxmax dymax dzmax
1           10.           10.           10.

moving grid data - rigid rotation (forced motion):
nrotat

0
lref

grid       irotat rfreq omegax omegay omegaz xorig yorig zorig
grid dthxmx dthymx dthzmx
Patched data:
ninter2

0

Rigid rotation input. Note that 
nrotat = 0, so that only remaining 
header lines are included.

Rigid translation input
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User Specified Rigid Grid Motion
Rigid grid translation input

Focusing attention on the rigid translation input:

moving grid data - rigid translation (forced motion):
ntrans

1  
lref
1.0

grid       itrans rfreq utrans vtrans wtrans
1             2         0.05         0.00        0.00 5.00   

grid     dxmax dymax dzmax
1           10.           10.           10.

Number of grid blocks to be 
translated

Line repeated ntrans times

Line repeated ntrans times

Reference length for reduced frequency
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User Specified Rigid Grid Motion
Rigid grid translation input

Focusing on the last two lines of input from the last slide:
.
.

grid       itrans rfreq utrans vtrans wtrans
1             2         0.05         0.00        0.00 5.00   

grid     dxmax dymax dzmax
1           10.           10.           10.

.

grid - Grid block to be rotated
itrans - Type of translation

= 0 - no translation
= 1 - translation with constant speed
= 2 - sinusoidal variation of displacement
= 3 - smooth increase in displacement, 

asymptotically reaching a maximum displacement
rfreq - reduced frequency when itrans = 2; growth rate to maximum displacement when itrans = 3
utrans, vtrans, wtrans - x,y,z components of translation velocity when itrans = 1; maximum 

displacements in the x,y,z directions when itrans > 1
dymax, dymax,dzmax - maximum (absolute) translation displacement in the x,y,z directions to be 

allowed for this grid.
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Surface Motion - Deforming Mesh
Overview

• CFL3D can perform several types of user specified surface motion
by deforming the mesh, i.e.  surface rotation and/or translation of all 
or partial segments of the solid surfaces as well as modal motion of 
surfaces.

• Aeroelastic, user defined deforming mesh surface and user defined 
rigid grid motion can be performed in any combination.

• There are two methods of deforming the mesh.
– Exponential Decay combined with Trans-Finite Interpolation (TFI) of 

interior mesh points.
– Finite Macro-Element deformation combined with TFI.

• Note that deforming surface motion can only be performed with the 
code running in unsteady mode.
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Surface Motion - Deforming Mesh
Overview

• In the first mesh movement option (Exponential Decay Method) deformation 
is performed in two steps. 

– The first step is exponential decay of control points away from the moving surface.  The rate 
of the exponential decay is controlled by user input.  

– The second step is a TFI of mesh points interior to the control points. 

• Advantage of the Exponential Decay Method is that it is efficient
• In the second mesh movement option (Finite Macro-Element Method) 

deformation is also performed in two steps. 
– The first step is a finite element solution of macro-element points.  The resulting solution 

transmits surface motion to the element node points. The element stiffness varies with 
distance from the surface. User specified input controls the rate at which the element 
stiffness decays away from surfaces.  

– The second step is a TFI of mesh points interior to the element node (or control) points. 
– See Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block 

Navier-Stokes Code,” NASA/TM-2005-213789, July 2005.

• Advantage of the Finite Macro-Element Method is that it maintains mesh 
quality, but is significantly more time consuming.
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Surface Motion - Deforming Mesh
Deforming mesh terminology

Control point,  also called 
node point - member of a 
sub-grid set of mesh points

Exterior
faces of a
flow field
block

Deforming
grid surface, e.g.
wing surface

Sub-grid surface
point

CFD
mesh
points
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Surface Motion - Deforming Mesh
Deforming mesh using Exponential Decay Method

Nearest
surface sub-
grid point, s

Control
point, c
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The movement of surface points is transmitted into the flow field sub-grid 
through an exponential decay function Dsc .  The rate of decay is controlled
by the parameters β2 and α2.
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Surface Motion - Deforming Mesh
Deforming mesh with Exponential Decay Method

Note several potential draw backs to this approach:

• Too rapid a rate of decay (β2 too large, α2 too small) results in the 
possibility of the surface points moving through nearby control 
points.

• Too low a rate of decay (β2 too small, α2 too large) results in the 
possibility of surface deformation being transmitted too far into the 
flow field with possible penetration of opposing surfaces.

• Typical values for decay parameters are:

β2 = 1 - 10   ,  α2 = 0.005 – 0.05
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Surface Motion - Deforming Mesh
Trans-Finite Interpolation (TFI) of interior points

Mesh points interior 
to the sub-block 
face are inter-
polated using 
deflection of four 
corner control 
points

The final step is a volume TFI of
interior grid points based on locations
of mesh points on the sub-block faces
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Surface Motion - Deforming Mesh
Coordinate systems and terminology for Finite Macro-Element Method

Computational domain Physical domain

Nodes using constant skip values Arbitrary node placement
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Surface Motion - Deforming Mesh
Finite Macro-Element Method

The equations of elasticity are solved using Hooke’s law for element m

mmm C εσ
rr

=
where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

m

m

m

m

m

m

mxz

yz

xy

zz

yy

xx

m

mxz

yz

xy

zz

yy

xx

m

G
G

G
E

E
E

C

00000
00000
00000
00000
00000
00000

,,

ε
ε
ε
ε
ε
ε

ε

σ
σ
σ
σ
σ
σ

σ
rr

)/exp(1
1

max1 rr
f

m
m ∆∆−−

=
βmmmm fGGfEE 00 , ==

∆rm is computed as
2

,
2

,
2

, )()()( mcsmcsmcsm zyxr ∆+∆+∆=∆

The user controls the rate of decay of material properties by the parameter β1. 
Typical values of β1 are in the range of 1 – 2.
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Surface Motion - Deforming Mesh
Input for deforming mesh

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1         alpha1       beta2       alpha2      nsprgit

4                -1                2.0                1.1        10.0           0.01              0
grid              iskip              jskip            kskip

1                   4                   4                2
Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

nskip - number of blocks for which skip value data is input.  If nskip = 0 the code 
computes default skip values (isktyp = -1,1) or control point index values
(isktyp = -2,2). 

isktyp - Parameter defining the mesh deformation approach
= - 2       
= - 1       
=   1    
=   2   

Exponential Decay Method

Finite Macro-Element Method
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Surface Motion - Deforming Mesh
Input for deforming mesh

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1         alpha1       beta2       alpha2      nsprgit

1                -1                2.0                1.0        10.0           0.01              0
grid              iskip              jskip            kskip

1                  4                   4                2
Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

beta1 - Parameter controlling macro-element stiffness decay  (typically 1.0-2.0)
alpha1 - Relaxation parameter for Gauss-Seidel solver   (typically 0.8-1.2).
beta2  - Decay parameter for the exponential decay method (typically 1 - 10).
alpha2  - Decay parameter for the exponential decay method (typically 0.005-0.05).
nsprgit - Number of spring analogy smoothing steps performed with the exponential

decay method. This step applies nsprgit spring analogy steps to the control 
points after application of the exponential decay step (typically 0-2).
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Surface Motion - Deforming Mesh
Input for deforming mesh

• There are 4 options for the construction of control points.
– Option 1: Code generated minimum number of control points.
– Option 2: Code generated default skip values.
– Option 3: User input of i,j,k skip values for each block. 
– Option 4: User defined input of control point i,j,k indices for each block. 

• These options depend on the value of nskip and the value of isktyp
– Option 1: isktyp = -2, 2 and  nskip = 0
– Option 2: isktyp = -1, 1 and  nskip = 0 
– Option 3: isktyp = -1, 1 and nskip = ngrid (Note: ngrid = number of grid blocks)
– Option 4: isktyp = -2, 2 and nskip = ngrid

• Option 1 creates the minimum number of control points (at non-constant intervals) by 
placing control point points only at each boundary segment extremity.  This is the 
preferred method.

• Options 2 creates skip values that result in control points at constant intervals through 
out each of the grids, with control points at each boundary segment extremity.  
Sometimes this is more robust than option 1, but can create many more control 
points.

preferred
method
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Surface Motion - Deforming Mesh
Option 1 – Code generated minimum number of control points

It is possible to have the code calculate the minimum number of control points.  This is 
the preferred method.  The  following lines of input  accomplish that:

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1         alpha1       beta2       alpha2      nsprgit

0                 -2                2.0                1.1        10.0           0.01              0
grid            iskip               jskip           kskip

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted.  The code  
calculates the minimum number of control points possible consistent with placing control 
points at each boundary segment extremity.  The values it calculates will be found in the 
‘cfl3d.out’ section that reflects input.  Note that the value of isktyp must be  either 2 or -2.
In general control points will not be at constant intervals.

nskip = 0
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Surface Motion - Deforming Mesh
Option 2 – Code generated skip values

It is possible to have the code calculate default skip values.  The  following lines of input 
accomplish that:

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1         alpha1       beta2       alpha2      nsprgit

0                -1                2.0                1.1        10.0           0.01              0
grid            iskip               jskip           kskip

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

Note that the data input line following the header ‘grid ….’ is omitted.  The code  
calculates the largest values of iskip, jskip, kskip possible.  The values it calculates will be 
found in the ‘cfl3d.out’ section that reflects input.  Note that the value of isktyp must be 
either 1 or -1.

nskip = 0
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Surface Motion - Deforming Mesh
Option 3 – User i,j,k skip input 

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1         alpha1       beta2       alpha2      nsprgit

4                -1                2.0                1.1        10.0           0.01              0
grid              iskip              jskip            kskip

1                   4                   4                2
2                   4                   8                2
3                   4                   8                2
4                   4                   4                2

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

grid - The block number for which skip values are input
iskip - Skip value for control points in the i-direction 
jskip - Skip value for control points in the j-direction
kskip - Skip value for control points in the k-direction

nskip lines are required

nskip = ngrid



143

Surface Motion - Deforming Mesh
Permissible skip values

k
j                       i     

For this grid: 
idim = 9,  jdim = 9, kdim = 5

and
iskip = 4, jskip = 4,  kskip = 2

iskip, jskip, kskip values determine
the i, j, k skip intervals for creating 
the sub-grid 

Skip values must evenly divide into one minus the 
dimension of the grid.   jskip must divide evenly into jdim-1.  
iskip must divide evenly into idim-1 , etc…

With idim = 9, permissible values of iskip are 2, 4 and 8.
With jdim = 9, permissible values of jskip are 2, 4 and 8.
With kdim = 5, permissible values of kskip are 2 and 4.
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Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

.

.
Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1    alpha1       beta2       alpha2      nsprgit

2                -2          2.0           1.1        10.0           0.01         0
Control point input section

GRID     NIND      NJND      NKND
1            3               5              3

************************** I NODE INDICES *************************************************
1           73             81

************************** J NODE INDICES *************************************************
1           33           173          313         345

************************** K NODE INDICES ************************************************
1           25             73

GRID     NIND     NJND       NKND
2            3               5             3

************************** I NODE INDICES *************************************************
1           73             81

************************** J NODE INDICES *************************************************
1           33           173          313         345

************************** K NODE INDICES ************************************************
1           25             73

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

nskip input sets 
are required

nskip = ngrid
isktyp must equal -2 or 2
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Surface Motion - Deforming Mesh
Option 4 – User input of i,j,k control point indices

• This option is used when there are problem areas in the surface motion that 
require customized control point placement.  e.g. significant surface motion 
restricted to a small portion of the entire surface area or if the finite macro-element
method is used and added control points are needed to define affine element 
shapes.

• Note that a control point must be placed at the extremities of all boundary condition 
segments, 1-1 blocking segments and all block corners.  

• The code will do a check at 1-1 blocking segments to see if the control points you
have selected result in continuity in control placement between 1-1 blocking 
boundaries.  It will add points as necessary to maintain control point continuity. This
is a very powerful feature that can be very useful when adding control points.

• The code will not tell you if a b.c. segment extremity or block corner does not have a 
control point assigned to it.  It will simply cause the grid motion to be messed up and 
produce negative volumes!
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

x

z       y

As an example consider the wing 
shown undergoing control surface 
rotation:

Trailing edge control
surface
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

The following unsteady input file performs the 
control surface rotation about the hinge point:
input/output files: 

wbgrid.cfl
plot3dg.bin                                               
plot3dq.bin                                                   
cfl3d.out                                                     
cfl3d.res
cfl3d.turres                                                 
cfl3d.blomax
cfl3d.out15                                                  
cfl3d.prout                                                   
cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach       alpha         beta           ReUe Tinf,dR ialph ihstry

0.82000   0.00000   0.00000 0.236E+07      486.00              1            0
sref cref bref xmc ymc zmc

1.000   1.00000   1.00000 0.25000    0.00000   0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000              0        3000        1.00000            2     2.00000
ngrid nplot3d        nprint nwrest ichk i2d     ntstep ita

1              1              1            1000   0                0            1        -2

Note that iunst = 2 for 
deforming mesh 
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

ncg iem iadvance iforce ivisc(i)     ivisc(j)    ivisc(k)
2              0               0             1  5             5             5

idim jdim kdim
81          345             73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0               0               0             0  0             0

inewg igridc is            js ks ie je ke
0               0               0             0  0             0             0            0

idiag(i)      idiag(j)      idiag(k)    iflim(i)      iflim(j)    iflim(k)
1               1               1             4  4             4

ifds(i)         fds(j)        ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1               1               1    0.3333    0.3333 0.3333

grid        nbci0      nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1               1               1             1  1            5              1            0

i0:      grid   segment        bctype jsta jend ksta kend ndata
1               1          1005            1     345             1            73            0

idim:  grid   segment        bctype jsta jend ksta kend ndata
1               1          1002            1     345             1            73            0

j0:      grid   segment        bctype ista iend ksta kend ndata
1               1          1003            1     81             1            73            0

jdim:  grid   segment        bctype ista end         ksta kend ndata
1              1           1003            1     81             1            73            0

k0:     grid   segment        bctype ista iend jsta jend ndata
1              1                 0            1  73             1            33            0
1              2           2004            1     73           33          313            2

tw/tinf cq
0.00000   0.00000

1              3                 0           1   73         313          345            0
1              4                 0         73    81             1          173            0
1              5                 0         73    81         173          345            0

kdim:  grid   segment        bctype       ista        iend      jsta         jend     ndata 
1              1           1003           1      81              1         345            0
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

mseq mgflag iconsf mtt ngam
1              2               1              0      2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0    0.3000      0.3000 0.3000 0    0.3000     0.3000 0.3000

ncyc mglevg nemgl nitfo
8             3               0               0

mit1        mit2         mit3           mit4     mit5  ...
1             1               1

1-1 blocking data:
nbli

2
number         grid          ista jsta ksta iend jend kend isva1   isva2

1             1              1                 1     1          73             33             1           1      2
2             1            73                 1      1          81           173             1           1        2

number         grid          ista jsta ksta iend jend kend isva1   isva2
1             1              1            345        1          73           313             1           1         2  
2             1            73            345         1          81           173             1           1         2

patch interface data:
ninter

0
plot3d output:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1             0              1              73       1         33           313              1           1        1        1

movie
0

print out:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0              1              73       1         33           313              1           1        1        1
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Control Surfaces:
ncs
0

Grid          ista        iend               jsta           jend            ksta            kend       iwall      inorm
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1            29           53                33         72                  1                 1 
1            29           53              274          313                  1                 1

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq    gmass damp     x0(2n-1)         xo(2n)         gf0(2n)

Moddfl amp         freq                 t0
Grid        iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit

0             -2           1.0            1.1        1.0         0.005         0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

The following lines must
be included when iunst = 2

User specified surface
motion input

Aeroelasticity input.  Note
that only header cards 
are input when naesrf = 0

Mesh deformation 
input
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Example 1: 3D Control surface rotation with Exponential Decay method

.

.
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1           29           53                33          72                  1                 1 
1           29           53              274           313                  1                 1

.

.

Grid - grid block containing the moving surface
idefrm - type of surface motion

= 1  - translation
= 2 - rotation

rfreq - reduced frequency of the surface motion

u/omegax, v/omegay, w/omegaz - x,y,z-components of surface translational velocity if idefrm = 1
- x,y,z-components of surface rotational velocity if idefrm = 2

xorig, yorig, zorig - x,y,z coordinates of the origin of the rotation axis (note: value 
must be input even when idefrm = 1)

ndefrm lines required

ndefrm lines required

Note that ndefrm = 2 because the trailing edge control 
surface is defined by an upper wing surface segment 
and a lower wing surface segment
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

.

.
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1           29           53                33          72                  1                 1 
1           29           53              274           313                  1                 1

.

.

Starting and ending 
i-indices of moving 
surfaces

Starting and ending 
j-indices of moving 
surfaces

Starting and ending 
k-indices of moving 
surfaces

Note that the two surface definitions actually comprise a single control 
device (upper and lower surfaces of the trailing edge control device).

1st grid point aft of 
Xorig = 0.75
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Short cut: If all the solid surfaces are to be rotated or translated in an identical 
manner, an input shortcut could have been applied:

.
.

Moving grid data – deforming surface (forced motion):
Ndefrm

-1
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1             2        0.05             0.00           5.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1             0             0                  0       0                  0                 0 

.

.

1 line only

1 line only

Setting ndefrm = -1 applies the input values to all surfaces.  Input
values of grid, and icsi, icsf, jcsi, jcsf, kcsi, kcsf are placeholders.
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Example 1: 3D Control surface rotation with Exponential Decay method

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit

0             -2           1.0            1.1          1.0       0.005         0
Control point index input

Note that α2 * ∆ rmax is the distance to which
surface motion is transmitted unabated into
the flow field

β2  - rate at which surface motion decays
away from a moving surface (outside 
of inner region controlled by α2)

Control point index input using 
Exponential Decay Method (isktyp < 0)

nskip = 0 forces automatic generation of the minimum number of control points 
(with isktyp = -2,2) at all segment and block extremities, while maintaining continuity 
at all blocking boundaries
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit

0             -2           2.0            1.1          1.0       0.005         0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

0
Slave     master       xorig yorig zorig

• This input option automatically creates the following control points:  (This format is how it 
would look if you were to input these control points by hand (i.e. using Option 4))

• Note that i node indices, j node indices, k node indices span the entire 
block.  (i.e. idim = 81, jdim = 345, kdim = 73)

• Boundary segments have a control point.  The trailing edge at j = 33 and 313
has control points assigned.  The wing tip at i = 73 has a control point assigned.

• Other control points have been assigned at discontinuities in the surface movement.
(e.g. at i = 28, 29 and 53, 54 and j = 72, 73 and 273, 274)  See the next slide.

GRID     NIND     NJND       NKND
1            7              8               2

************************** I NODE INDICES *************************************************
1          28            29             53           54            73           81

************************** J NODE INDICES *************************************************
1          33            72             73          273         274         313          345

************************** K NODE INDICES ************************************************
1          73

Control point option 1 is used here
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Surface Motion - Deforming Mesh
Example 1: 3D Control surface rotation with Exponential Decay method

Upper surface control point locations 

GRID     NIND     NJND       NKND
1            7              8               3

************************** I NODE INDICES *************************************************
1          28            29             53           54            73           81

************************** J NODE INDICES *************************************************
1          33            72             73          273         274         313          345

************************** K NODE INDICES ************************************************
1          25            73

Control points selected
Center of rotation

Discontinuous 
grid motion

Control surface definition

Control points
located at all
grid motion
discontinuities
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

Consider the 2D three element airfoil with rotation and translation of the 
trailing edge flap.

a)  Initial mesh, flap 30 degrees b) Final mesh, flap 60 degrees

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

.

.
MOVING GRID DATA - DEFORMING SURFACE (FORCED MOTION):
NDEFRM

1
LREF

1.0
GRID   IDEFRM    RFREQ  U/OMEGAX  V/OMEGAY  W/OMEGAZ      XORIG       YORIG      ZORIG

3               2         0.05               0.00  25.00                0.00           0.80            0.00          0.00
GRID          ICSI        ICSF             JCSI           JCSF               KCSI         KCSF

3               1              2                 49 217                     1                1
MOVING GRID DATA - AEROELASTIC SURFACE (AEROELASTIC MOTION):
NAESRF

0
IAESRF      NGRID     GREFL           UINF           QINF     NMODES  ISKYHOK
FREQ      GMASS      DAMP     X0(2N-1)        X0(2N)           GF0(2N)

MODDFL          AMP       FREQ              T0
GRID            IAEI         IAEF           JAEI           JAEF                 KAEI          KAEF

MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT
NSKIP      ISKTYP      BETA1     ALPHA1        BETA2         ALPHA2    ISPRNIT

4                 2         1.000          1.000 20.000                 0.005                0
CONTROL  POINT INDEX INPUT

GRID          NIND        NJND        NKND
1                2              33                2

********************************************* I NODE INDICES **************************************************
1                2

Number of mesh
blocks

This section defines
the rotation of the
trailing edge flap

Finite Macro-Element
Method with user input
of control point indices
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

******************************************* J NODE INDICES **********************************************
1            10            34           49            75           101           113           137          161      201

237          273          299         317           333   349           380           395          410           433
445          473          509         545           585   609           633           645          671           697
712          736          745

******************************************** K NODE INDICES **********************************************
1            57

GRID       NIND      NJND     NKND
2              2            27            2

******************************************** I NODE INDICES ***********************************************
1              2

******************************************** J NODE INDICES ***********************************************
1            10           34           49             75            101           113           137           145     157

185          225          261        281           299    325           361           397           437          461
485          497          523        549           564    588           597

******************************************** K NODE INDICES ***********************************************
1            89

GRID       NIND       NJND    NKND
3              2            16            2

******************************************** I NODE INDICES ***********************************************
1              2

******************************************** J NODE INDICES ***********************************************
1            10           34           49             75            101           116          121            129     153

165          191          217        232           256    265
******************************************** K NODE INDICES ***********************************************

1           65
GRID       NIND     NJND     NKND

4             2            32            5

Up to 10 per line,
500 total allowed
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

******************************************* I NODE INDICES *********************************************
1             2

******************************************* J NODE INDICES *********************************************
1           10            34            49            75           101           116          121          133        161

201         237          257          273          289    320           335          350          373           385
413         449          485          525          549    573           585          611          637           652
676        685

******************************************* K NODE INDICES *********************************************
1          10            17            24            33

MOVING GRID DATA - MULTI-MOTION COUPLING
NCOUPL

0
SLAVE   MASTER   XORIG  YORIG  ZORIG
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

Initial Macro-Elements Final Macro-Elements

Initial Mesh Final Mesh
From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation with Finite Macro-Element Method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation – 1-1 block point checking

Control points without 
1-1 point blocking check

Control points with 
1-1 point blocking check

Block 
boundaries
separate due 
to high strain 
rates in cove
region.

Control point orientation after 
flap is deflected
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

Without spring analogy smoothing steps

With 5 spring analogy smoothing steps
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

An alternate approach is to allow automatic creation of the minimum number
of control points.  (Option 1) The input below accomplishes that by setting nskip = 0.  
Note that the Exponential Decay Method is used (isktyp < 0).

.

.
MOVING GRID DATA - DATA FOR FIELD/MULTIBLOCK MESH MOVEMENT

NSKIP      ISKTYP      BETA1     ALPHA1        BETA2         ALPHA2    ISPRNIT
0                -2         1.000          1.100           2.000                  0.05                 2

CONTROL  POINT INDEX INPUT
MOVING GRID DATA - MULTI-MOTION COUPLING
NCOUPL

0
SLAVE   MASTER   XORIG  YORIG  ZORIG

These parameters define the
control point motion with the 
Exponential Decay Method 
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

The control points that are code selected appear in the ‘cfl3d.out’ file:

.

.
moving grid data - data for field/multiblock mesh movement

nskip isktyp beta1      alpha1        beta2      alpha2   nsprngit
4             -2  1.000000  1.100000  2.000000  0.050000              2

ng nipt njpt nkpt
1              2             11               2

control point i-indices for grid levels     1   2   3
1              1               1
2              1               1

control point j-indices for grid levels     1   2   3
1              1               1

49            25             13
50            25             13

137           69             35
273         137             69
317         159             80
473         237           119
609         305           153
696         348           174
697         349           175
745         373           187

control point k-indices for grid levels     1   2   3
1             1               1

57           29             15

ng nipt njpt nkpt
2               2             11               2

control point i-indices for grid levels     4   5   6
1               1               1  
2               1               1

control point j-indices for grid levels     4   5   6
1               1               1

49             25             13
50             25             13

137             69             35
145             73             37
281           141             71
325           163             82
461           231           116
548           274           137
549           275           138
597           299           150

control point k-indices for grid levels     4   5   6
1               1               1

89             45             23
.
.
.

Control points
at finest grid 
level

The resulting mesh movement is shown in the next slide.
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation using Exponential Decay Method

Initial Macro-Elements Final Macro-Elements

Final MeshInitial Mesh
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation

• The mesh movement shown in the previous slides is robust  (no negative volumes) through the 
entire range of motion shown, however mesh quality aft of the flap is somewhat degraded after
deflection.

• If β2 is set to 1.0  or if the Finite Macro-Element method is used with the code selected minimum 
number of control points (as was shown),  negative volumes are the result.

• There is a simple way to fix this problem.  This will be demonstrated next.  In the process an option 
for running the code will be demonstrated in which only the mesh motion and mesh calculations 
(e.g. metric and volume calculations) are performed in the code.  This option greatly speeds up the 
code when the mesh motion is being debugged.

• The ‘Mesh only’ run option is invoked by using the keyword input, meshdef 1 .  Keyword 
input will be discussed in detail later in the course.  Note spelling and capitalization are important.

• This is input as follows:
.
.           

cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

>
meshdef 1
negvol 1
<
3 Element Airfoil case

Mach       alpha         beta           ReUe Tinf,dR ialph ihstry
.
.

Keyword input
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation 

• Setting the keyword meshdef to 1 also causes the control points to be output in a 
Tecplot file in point wise data format.  Other auxiliary data are also printed out in other 
files.

• If one processor is used all block control points are output into the file Tecplot data
file  ‘fort.4000’.  Data included in this file are x,y,z locations of control points, x,y,z
deflections per time step, node number, and node number of the nearest surface point.

• If multiple processors are used, the control points from the blocks processed on each 
processor are put in the successive files ‘fort.4001, fort.4002, …’

• Note that if the option movie = inc is used, the control points at every inc time steps 
will be output. If movie = 0, only control points at the final time step will be output.

• Once the control points are plotted it is possible to better visualize where added control 
points need to be placed.

• This is the option that was used to create the plots of control points shown in this 
presentation.
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation 

• Returning to the flap rotation example above, say we want to run it using control point
option 1 (nskip = 0, isktyp = -2,2)  but now using the Finite Macro-Element method
(isktyp = 2)

• The input parameters used are: β1 = 1.0, α1 = 0.9.
• Keywords ‘meshdef 1’ and ‘negvol 1’ are set.  When the keyword ‘negvol 1’ is used, 

the code continues executing and prints a diagnostic message in  ‘cfl3d.out’ indicating 
where the negative volume occurred.

• The code encounters negative volumes, with the following messages appearing 
in the ‘cfl3d.out’ file:

.

.
WARNING  ... negative volume at i,j,k=    1  514    2 block    1 not stopping!
WARNING  ... negative volume at i,j,k=    1  515    2 block    1 not stopping!

.

.
• The majority of negative volumes appear to be in block 1.  By plotting the control point

output it is clear that elements around the leading edge slat are not well defined, and 
probably causing poorly defined (singular) macro-elements in that region.
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Example 2 : 2D Flap rotation 

Contents of ‘meshdef.inp’:
• The first step in solving this problem is 

to observe that the file ‘meshdef.inp’
has been created.

• This file contains the control points that 
were created by the code.

• Contents of this file can be pasted into 
the input and customized as needed.

• Since negative volumes occurred in 
block 1  we will add to the control  
points in that block.

GRID   NIND   NJND   NKND
1          2        11           2

******************************* I NODE INDICES ************************************
1          2

******************************* J NODE INDICES ***********************************
1        49        50        137       273       317  473      609      696      697

745
******************************* K NODE INDICES ***********************************

1        57
GRID   NIND   NJND   NKND

2         2         11          2
******************************* I NODE INDICES ************************************

1         2
******************************* J NODE INDICES ************************************

1       49         50       137       145       281   325     461      548      549
597

******************************* K NODE INDICES ***********************************
1       89

GRID   NIND   NJND   NKND
3         2           8          2

******************************* I NODE INDICES ***********************************
1         2

******************************* J NODE INDICES **********************************
1       49         50      121       129       216    217    265

******************************* K NODE INDICES *********** ***********************
1        65

GRID   NIND   NJND   NKND
4         2         10          2

******************************* I NODE INDICES ***********************************
1         2

******************************* J NODE INDICES **********************************
1       49         50       121       257       413   549      636     637     685

******************************* K NODE INDICES **********************************
1       33
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Surface Motion - Deforming Mesh
Example 2 : 2D Flap rotation 

• These additional points have been   
chosen simply to fill in gaps in the 
control point distribution.

• This customized input is pasted into 
the input file, and nskip set to 4.

GRID   NIND   NJND   NKND
1          2        18           2

******************************* I NODE INDICES ************************************
1          2

******************************* J NODE INDICES ***********************************
1        49        50        103      137       173   223     273       297     317      

373      423      473        543      609      696       697        745
******************************* K NODE INDICES ***********************************

1        57
GRID   NIND   NJND   NKND

2         2         11          2
******************************* I NODE INDICES ************************************

1         2
******************************* J NODE INDICES ************************************

1       49         50       137       145       281   325     461      548      549
597

******************************* K NODE INDICES ***********************************
1       89

GRID   NIND   NJND   NKND
3         2          12          2

******************************* I NODE INDICES ***********************************
1         2

******************************* J NODE INDICES **********************************
1       49         50       73        101        121  129      137     157     216       

217    265
******************************* K NODE INDICES *********** ***********************

1        65
GRID   NIND   NJND   NKND

4         2         10          4
******************************* I NODE INDICES ***********************************

1         2
******************************* J NODE INDICES **********************************

1       49         50       121       257       413   549      636     637     685
******************************* K NODE INDICES **********************************

1       10         17         33

Contents of ‘meshdef.inp’ customized:

Points added that remove 
the negative volumes in 
block 1

Points added to better define
the flap region
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Example 2 : 2D Flap rotation 

GRID   NIND   NJND   NKND
1          2         26          2

********************************** I NODE INDICES ************************************ 
1          2

********************************** J NODE INDICES ************************************
1        49         50       103      109      129   137      173      203      223

273       297      317       373      423      473      523      543      573      609
617       637      643       696      697      745

********************************** K NODE INDICES ************************************
1        57

GRID   NIND   NJND   NKND
.
.
.
.

GRID   NIND   NJND   NKND
3         2         13           2

********************************** I NODE INDICES *************************************
1         2

********************************** J NODE INDICES *************************************
1       49         50         73      101      121   129      137      157      163

216      217      265
********************************** K NODE INDICES ************************************

1       65
GRID   NIND   NJND   NKND

4         2         20           4
********************************** I NODE INDICES ************************************

1         2
********************************** J NODE INDICES ************************************

1       49         50          73      101      121  257      313      363      413
463     483       513        549      557      577      583      636      637      685

********************************** K NODE INDICES ************************************
1       10         17          33

Control point indices the code actually uses:

This is the data output into the new 
file ‘meshdef.inp’ after the code is 
rerun.  This file is printed out because 
new points have been added by the code
in addition to points added by the user.

Control points added 
by user

Control points added 
by the code to maintain 
1-1 blocking interface
continuity
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Example 2 : 2D Flap rotation

Control point indices the code actually uses:

Control point lines 
added by the user

Control point lines added
by the code to maintain
continuity at 1-1 blocking
interfaces

With these new control points, the code runs robustly with no negative
volumes for both the Exponential Decay and Finite Macro-Element methods
for a range of parameter values.  Note that the region just aft of the flap 
retains grid quality better using the Finite Macro-Element method than did the original.



175

Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with Finite Macro-Element Method

From Bartels, R. E., “Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code,”
NASA/TM-2005-213789, July 2005.

Initial macro-element orientation Finite macro-element orientation
after pitch up

Trailing edge detail of macro-element 
Orientation – note orthogonality

Trailing edge detail of mesh 
orientation
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Surface Motion - Deforming Mesh
Example 3 : 2D airfoil rotation with Exponential Decay Method

Control point orientation
after pitch up, β2 = 2, α2 = .005Initial control point orientation
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Surface Motion - Deforming Mesh
Example 4 : Internal flow through a flexible tube using the Finite Macro-Element Method

y

x

z

x
y

z

Top
view:

Bottom
view:

y

x

y

z

y

x

X-Y plane view of 
deformed control points

X-Y plane view of 
deformed mesh points

Control points for motion 
of internal flow field mesh 

Deformed flexible 
tube surface

Y-Z plane view of 
deformed control points
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Surface Motion - Deforming Mesh
Example 5 : Transport wing bending using the Exponential Decay Method

Deformed mesh

Initial and deformed 
geometry

This example used 
mesh movement Option 2 
(isktyp = -1, nskip = 0)
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Surface Motion - Deforming Mesh
Geometric conservation law

In general the equations computed are

)(1 QR
t
Q

J
=

∂
∂

where

Q - solution vector
J - Jacobian of the grid transformation
R(Q) - right hand side composed of spatial flux terms

For steady and unsteady computations:
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where
F,G,H - inviscid fluxes
Fv,Gv,Hv - viscous fluxes
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Geometric conservation law

For unsteady deforming mesh computations there is an additional term:
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Geometric Conservation Law (GCL), due to grid volume
change

The implication of this is that a computation using rigid grid motion may
perform somewhat differently than a deforming grid solution with the same 
time step size, number of sub-iterations and CFL number.  However, the 
two fully converged solutions will be the same.  See Bartels, R. E., “Mesh and 
Solution Strategies and the Accurate Computation of Unsteady Spoiler and 
Aeroelastic Problems,” Journal of Aircraft, Vol. 37, No. 3, May 2000, pp. 521-529.
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Surface Motion - Deforming Mesh
Multiple types of coupled motion

Consider the example of wing plunge combined with control surface 
rotation. Since the control surface rotation is about a point fixed on the 
larger moving wing surface, coupling of the two motions will be 
required. There are two ways to perform this coupled motion:

1. Coupling control surface rotation and wing translation combined using 
mesh deformation.

2. Coupling control surface rotation using mesh deformation with rigid 
grid translation.

Although these two approaches result in identical wing surface motion, 
off body grid motion will be much different.
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Surface Motion - Deforming Mesh
Example: Control surface rotation plus wing plunging

x

z       y

As an example consider the wing 
shown having both wing plunge plus
control surface rotation:

Trailing edge control
surface
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Surface Motion - Deforming Mesh
Example: Multi-motion using deforming mesh

The following unsteady input file performs the wing plunging with 
control surface rotation using deforming mesh:

input/output files: 
wbgrid.cfl
plot3dg.bin                                               
plot3dq.bin                                                   
cfl3d.out                                                     
cfl3d.res
cfl3d.turres                                                 
cfl3d.blomax
cfl3d.out15                                                  
cfl3d.prout                                                   
cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach       alpha         beta           ReUe Tinf,dR ialph ihstry

0.82000   0.00000   0.00000 0.236E+07      486.00              1            0
sref cref bref xmc ymc zmc

1.000   1.00000   1.00000 0.25000    0.00000   0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000              0        3000        1.00000            2     2.00000
ngrid nplot3d        nprint nwrest ichk i2d     ntstep ita

1              1              1            1000   0                0            1        -2

Note that iunst = 2 since 
deforming mesh is used
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Example: Multi-motion using deforming mesh

ncg iem iadvance iforce ivisc(i)     ivisc(j)    ivisc(k)
2              0               0             1  5             5             5

idim jdim kdim
73          345             73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0               0               0             0  0             0

inewg igridc is            js ks ie je ke
0               0               0             0  0             0             0            0

idiag(i)      idiag(j)      idiag(k)    iflim(i)      iflim(j)    iflim(k)
1               1               1             3  3             3

ifds(i)         fds(j)        ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1               1               1    0.3333    0.3333 0.3333

grid        nbci0      nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1               1               1             1  1            5              1            0

i0:      grid   segment        bctype jsta jend ksta kend ndata
1               1          1001            1     345             1            73            0

idim:  grid   segment        bctype jsta jend ksta kend ndata
1               1          1002            1     345             1            73            0

j0:      grid   segment        bctype ista iend ksta kend ndata
1               1          1003            1     73             1            73            0

jdim:  grid   segment        bctype ista end         ksta kend ndata
1              1           1003            1     73             1            73            0

k0:     grid   segment        bctype ista iend jsta jend ndata
1              1                 0            1  49             1            33            0
1              2           2004            1     49           33          313            2

tw/tinf cq
0.00000   0.00000

1              3                 0           1   49         313          345            0
1              4                 0         49    73             1          173            0
1              5                 0         49    73         173          345            0

kdim:  grid   segment        bctype       ista        iend      jsta         jend     ndata 
1              1           1003           1      73              1         345            0
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Example: Multi-motion using deforming mesh

mseq mgflag iconsf mtt ngam
1              2               1              0      2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0    0.3000      0.3000 0.3000 0    0.3000     0.3000 0.3000

ncyc mglevg nemgl nitfo
8             3               0               0

mit1        mit2         mit3           mit4     mit5  ...
1             1               1

1-1 blocking data:
nbli

2
number         grid          ista jsta ksta iend jend kend isva1   isva2

1             1              1                 1     1          49             33             1           1      2
2             1            49                 1      1          73           173             1           1        2

number         grid          ista jsta ksta iend jend kend isva1   isva2
1             1              1            345        1          49           313             1           1         2  
2             1            49            345         1          73           173             1           1         2

patch interface data:
ninter

0
plot3d output:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1             0              1              49       1           1           345              1           1       1        1

movie
0

print out:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0              1              49       1           1           345              1           1       1        1
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Example: Multi-motion using deforming mesh

Control Surfaces:
ncs
0

Grid          ista        iend               jsta           jend            ksta            kend       iwall      inorm
Moving grid data – deforming surface (forced motion):
ndefrm

3
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1              1        0.10             0.00          0.00 0.20            0.00       0.00 0.00
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1              1           49                33        313                  1                 1
1            25           37                33         65                  1                 1 
1            25           37               281         313                  1                 1

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq    gmass damp     x0(2n-1)         xo(2n)         gf0(2n)

Moddfl amp         freq                 t0
Grid        iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit

0             -2           1.0            1.1          1.0       0.005         0
Control point index input

Moving grid data – multi-motion coupling
ncoupl

1
Slave     master       xorig yorig zorig

1              1       0.75              0.00           0.00

User specified surface 
motion data now 
includes both trans-
lation and rotation

Multi-motion coupling 
data now included
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Example: Multi-motion using deforming mesh

Focusing on the user specified motion input:
.
.

Moving grid data – deforming surface (forced motion):
ndefrm

3
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1              1        0.10             0.00          0.00 0.20            0.00       0.00 0.00
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1              1           49                33        313                  1                 1
1            25           37                33         65                  1                 1 
1            25           37               281         313                  1                 1

.

.

The new lines prescribe
the motion of the wing
surface

Note that idefrm = 1, which corresponds to translational motion.
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Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

The following unsteady input file performs the wing plunging using 
rigid grid translation and control surface rotation using deforming mesh:

input/output files: 
wbgrid.cfl
plot3dg.bin                                               
plot3dq.bin                                                   
cfl3d.out                                                     
cfl3d.res
cfl3d.turres                                                 
cfl3d.blomax
cfl3d.out15                                                  
cfl3d.prout                                                   
cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach       alpha         beta           ReUe Tinf,dR ialph ihstry

0.82000   0.00000   0.00000 0.236E+07      486.00              1            0
sref cref bref xmc ymc zmc

1.000   1.00000   1.00000 0.25000    0.00000   0.00000
dt irest iflagts fmax iunst cfl_tau

0.04000              0        3000        1.00000            3     2.00000
ngrid nplot3d        nprint nwrest ichk i2d     ntstep ita

1              1              1            1000   0                0            1        -2

Note that iunst = 3, for 
deforming mesh plus
rigid grid motion
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Example: Multi-motion using deforming plus rigid grid motion

ncg iem iadvance iforce ivisc(i)     ivisc(j)    ivisc(k)
2              0               0             1  5             5             5

idim jdim kdim
73          345             73

ilamlo ilamhi jlamlo jlamhi klamlo klamhi
0               0               0             0  0             0

inewg igridc is            js ks ie je ke
0               0               0             0  0             0             0            0

idiag(i)      idiag(j)      idiag(k)    iflim(i)      iflim(j)    iflim(k)
1               1               1             3  3             3

ifds(i)         fds(j)        ifds(k)  rkap0(i)   rkap0(j)  rkap0(k)
1               1               1    0.3333    0.3333 0.3333

grid        nbci0      nbcidim nbcj0   nbcjdim nbck0   nbckdim iovrlp
1               1               1             1  1            5              1            0

i0:      grid   segment        bctype jsta jend ksta kend ndata
1               1          1001            1     345             1            73            0

idim:  grid   segment        bctype jsta jend ksta kend ndata
1               1          1002            1     345             1            73            0

j0:      grid   segment        bctype ista iend ksta kend ndata
1               1          1003            1     73             1            73            0

jdim:  grid   segment        bctype ista end         ksta kend ndata
1              1           1003            1     73             1            73            0

k0:     grid   segment        bctype ista iend jsta jend ndata
1              1                 0            1  49             1            33            0
1              2           2004            1     49           33          313            2

tw/tinf cq
0.00000   0.00000

1              3                 0           1   49         313          345            0
1              4                 0         49    73             1          173            0
1              5                 0         49    73         173          345            0

kdim:  grid   segment        bctype       ista        iend      jsta         jend     ndata 
1              1           1003           1      73              1         345            0
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Example: Multi-motion using deforming plus rigid grid motion

mseq mgflag iconsf mtt ngam
1              2               1              0      2

issc epsssc(1) epsssc(2) epsssc(3)      issr epsssr(1) epsssr(2) epsssr(3)
0    0.3000      0.3000 0.3000 0    0.3000     0.3000 0.3000

ncyc mglevg nemgl nitfo
8             3               0               0

mit1        mit2         mit3           mit4     mit5  ...
1             1               1

1-1 blocking data:
nbli

2
number         grid          ista jsta ksta iend jend kend isva1   isva2

1             1              1                 1     1          49             33             1           1      2
2             1            49                 1      1          73           173             1           1        2

number         grid          ista jsta ksta iend jend kend isva1   isva2
1             1              1            345        1          49           313             1           1         2  
2             1            49            345         1          73           173             1           1         2

patch interface data:
ninter

0
plot3d output:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1             0              1              49       1           1           345              1           1       1        1

movie
0

print out:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0              1              49       1           1           345              1           1       1        1
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Surface Motion - Deforming Mesh
Example: Multi-motion using deforming plus rigid grid motion

Control Surfaces:
ncs
0

Grid          ista        iend               jsta           jend            ksta            kend       iwall      inorm
moving grid data - rigid translation (forced motion):

ntrans
1  

lref
1.0
grid       itrans rfreq utrans vtrans wtrans

1             2         0.10         0.00        0.00 5.00   
grid     dxmax dymax dzmax

1           10.           10.           10.
moving grid data - rigid rotation (forced motion):

nrotat
0

lref
grid            irotat rfreq omegax omegay omegaz xorig yorig zorig
grid         dthxmx dthymx dthzmx
Moving grid data – deforming surface (forced motion):
ndefrm

2
lref
1.0

Grid      idefrm rfreq u/omegax v/omegay w/omegaz xorig yorig zorig
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00
1              2        0.05             0.00         10.00             0.00            0.75       0.00        0.00

Grid          icsi icsf jcsi jcsf kcsi kcsf
1            25           37                33         65                  1                 1 
1            25           37               281         313                  1                 1

Rigid grid motion
input

Surface motion
input
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Example: Multi-motion using deforming plus rigid grid motion

Moving grid data – aeroelastic surface (aeroelastic motion):
naesrf

0
Iaesrf ngrid grefl uinf qinf nmodes iskyhook
Freq    gmass damp     x0(2n-1)         xo(2n)         gf0(2n)

Moddfl amp         freq                 t0
Grid        iaei iaef jaei jaef kaei kaef

Moving grid data – data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit

0             -2           1.0            1.1          1.0       0.005         0
Control point index input
Moving grid data – multi-motion coupling
ncoupl

1
Slave     master       xorig yorig zorig

1              1       0.75              0.00           0.00

Note:  CFL3D does not allow initiating new kinds of motion upon restarts.   Therefore if an initial 
deforming mesh computation is  performed to  reach an equilibrium before initiating a combined rigid 
and moving  (deforming) control surface computation, the option iunst =  3 must be  used from the start 
(that is after an initial steady state  computation with  dt < 0), with control surface motion set to zero.

Multi-motion coupling 
data included

Aeroelastic header lines
included

Deforming mesh input
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Aeroelastic Analysis
Overview 

• CFL3D has the capability to perform both static and dynamic aeroelastic 
analysis.  In this analysis the fluid and structure interact through a time 
marching simulation (e.g. flutter analysis, etc…)

• All aeroelastic and modal analyses are performed by running the code in 
unsteady mode

• CFL3D performs only linear aeroelastic analysis
• The equations of structural dynamics must be decoupled modally

– Eigenvalue analysis is required prior to running CFD to obtain frequencies, 
generalized masses and mode shapes.  

– A preprocessing step projecting the mode shapes onto the CFD surface grids is 
required.

– The code reads the modal data projected onto the CFD surfaces in the file 
‘aesurf.dat’.  This file must be contained in the directory in which the executable 
resides.

• CFL3D also has the capability to perform unsteady deforming body analysis 
using mode shapes.  In this mode the user specifies modal motion (e.g. 
control surface rotation, wing plunge oscillation, etc…) in the aeroelastic 
input section
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Aeroelastic Analysis
Example of an aeroelastic model

Consider the Benchmark Active 
Controls Technology  (BACT) 
aeroelastic model shown. The 
model has pitch and plunge 
aeroelastic degrees of freedom. The 
model parameters are:

MT = 5.966  slugs
Sα = 0.01420 slug-ft
Iα = 2.8017 slug-ft2
Kh = 2659 lb/ft
Ka = 2897 lb-ft/rad
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Aeroelastic Analysis
Example of an aeroelastic model

The coupled equations of structural dynamics are 

where ζ1 is plunge (h) and ζ2 is pitch (α).  Eigen-analysis if this system 
yields the frequencies
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Aeroelastic Analysis
Example of an aeroelastic model

Using the eigenvectors

the generalized masses are obtained
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Aeroelastic Analysis
Example of an aeroelastic model

… and the decoupled equations of structural dynamics

where

Carrying through the multiplication on the right-hand side, we have
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Aeroelastic Analysis
Example of an aeroelastic model

The mode shapes that are input into CFL3D are revealed by the 
last equations

These can be used to create the modal shape projected to each 
wing surface grid point for input into CFL3D. Note that x* and y* are 
in the same units as the structural model.
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First mode shape, Φz,1

Second mode shape, Φz,2
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Aeroelastic Analysis
Aeroelastic input

.

.

.

dt irest iflagts fmax iunst cfl_tau
0.0125           1            0           1.0          2            5.0                          

.

.

.
control surfaces:

ncs
0

grid        ista iend jsta jend ksta kend iwall inorm
moving grid data - deforming surface (forced motion)
ndefrm

0
lref
grid   idefrm rfreqi omegax omegay omegaz xorig yorig zorig
grid        icsi icsf jcsi jcsf kcsi kcsf

iunst = 2 for an 
aeroelastic simulation

User specified
deforming surface
Input, header lines
only
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Aeroelastic Analysis
Aeroelastic input

moving grid data - aeroelastic surface (aeroelastic motion)
naesrf

1 
iaesrf ngrid grefl uinf qinf nmodes iskyhk

1             -1  0.08333           730.       1000.             2             0 
freq       gmass damp   x0(2*n-1)    x0(2*n)   gf0(2*n)

21.1113283     1.0000        0.00             0.0           0.0 0.
32.1564454     1.0000        0.00             0.0           0.0 0. 

moddfl amp         freq               t0
0       0.000        0.00           0.00
0       0.000        0.00           0.00

grid          iaei iaef jaei jaef kaei kaef
1              0             0                0             0             0             0

moving grid data - skip data for field/multiblock mesh movement
nskip isktyp beta1      alpha1      beta2     alpha2    nsprgit
0             -2           1.0            1.1          1.0       0.005         0

Control point index input
moving grid data - multi-motion coupling

ncoupl
0

slave      master       xorig yorig zorig

Aeroelastic input

Mesh deformation
input
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Aeroelastic Analysis
Aeroelastic input

Focusing on the aeroelastic input section:

moving grid data - aeroelastic surface (aeroelastic motion)
naesrf

1 
iaesrf ngrid grefl uinf qinf nmodes iskyhk

1             -1  0.08333           730.         1000.            2            0 
freq       gmass damp   x0(2*n-1)    x0(2*n)   gf0(2*n)

21.1113283     1.0000        0.00             0.0           0.0 0.
32.1564454     1.0000        0.00             0.0           0.0 0. 

moddfl amp         freq               t0
0       0.000        0.00           0.00
0       0.000        0.00           0.00

grid          iaei iaef jaei jaef kaei kaef
1              0             0                0              0             0             0

iaesrf - Identifier of the aeroelastic surface for which data is being supplied
ngrid - Number of surface segments that make up this aeroelastic surface
nmodes - Number of modes to be modeled in CFL3D
iskyhk - Not currently used, any value will serve as a placeholder
uinf - Free-stream velocity, in the same units as the equations of structural dynamics
qinf - Dynamic pressure, in the same units as the equations of structural dynamics
grefl - Conversion from CFD grid units to structural equation units.

Number of aeroelastic
surfaces

naesrf lines

nmodes lines

one line only when
ngrid = -1 (Currently this 
Is the only option)
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Aeroelastic Analysis
Aeroelastic input

Regarding the input parameter grefl, consider the equations of structural dynamics for the
pitch/plunge example:

The actual equations solved in CFL3D are:
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Lengths in structural
model units

Lengths in CFD
grid unitsCFDAE SSgrefl /=By definition:
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Aeroelastic Analysis
Aeroelastic input

In the present example the structural equations are in units of feet, while the CFD grid 
is in units of inches.  Since the aspect ratio of the two models is identical,  the 
conversion for the present example can be obtained from

Suppose we wish to simulate the same aeroelastic model, but now with a 2D 
CFD grid, having unit span.

Structural model: c  = 1.333333 ft, b = 2.666667  ft
CFD grid model: c  = 16 , b = 1

In this case we calculate:

This is the grefl parameter that would be entered in the aeroelastic input section.

unitgridftSSgrefl CFDAE /08333.0
144

1/ ≈==

unitgridftSSgrefl CFDAE /4714045.0
16

55555556.3/ ≈==
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Aeroelastic Analysis
Modal form of the equations

Consider the decoupled equations of structural dynamics for N   (or nmodes in the
input)  modes

where q is the modal variable vector and Q is the generalized force vector, each of
length N.  ω1 ,…,  ωN are the natural frequencies of each structural  mode in radians, 
and m1 ,…, mN are the generalized masses.  
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Aeroelastic Analysis
Modal form of the equations

CFL3D input definitions as they relate to the modal  equations of 
structural dynamics are as follows:

Units for frequency is radians/time  (usually time scale is seconds
for the structural dynamics equations). 
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Aeroelastic Analysis
Aeroelastic input

• x0(2*n-1) is the initial generalized displacement of the mode; will override the  value in the 
restart file (if restarting) when x0(2*n-1) is nonzero.  Otherwise, it will not override the restart 
value.  This allows the mode to be perturbed for excitation of aeroelastic  dynamic response 
after a static aeroelastic starting solution has been performed.

• x0(2*n) is the initial generalized velocity of the mode; will override the value in the restart file 
(if restarting) when x0(2*n) is nonzero.  Otherwise, it will not override the restart value. This 
allows the mode to be perturbed for excitation of aeroelastic dynamic response after a  static 
aeroelastic starting solution has been performed. 

• gf0(2*n) is the generalized force offset to include for the mode.  This value is included in 
CFL3D computation of generalized force in the following way for mode n = 1 to nmodes:

{ } )*2(02 ngfsdcgreflqQ npn −⋅Φ= ∫∫∞
rr

Value from input



207

Aeroelastic Analysis
Modal surface input

• Currently CFL3D assumes that the aeroelastic surface comprises 
all  boundary segments with the boundary condition types 1005, 
1006, 2004, 2014 or 2016.  

• Note that the boundary condition 1001 is not considered an 
aeroelastic surface.  Therefore, if a symmetry plane is required to 
deform with a pitching wing, it must be treated as an inviscid wall 
boundary (1005 or 1006)

• The modal input file aesurf.dat must have modal data for a given 
surface point in free field ascii format (no commas) with Φx,n, Φy,n, 
Φz,n modal deflections at each surface point for each mode n.
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Aeroelastic Analysis
Format of the modal surface input

The following ordering is required:

j = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend ,  repeat nseg times

j = jdim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) ,k = ksta to kend , i = ista to iend ,  repeat nseg times

k = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend ,  repeat nseg times

k = kdim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , i = ista to iend ,  repeat nseg times

i = 1 surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend , k = ksta to kend ,  repeat nseg times

i = idim surface:
Φx,n(i,j,k) Φy,n(i,j,k) Φz,n(i,j,k) , j = jsta to jend, k = ksta to kend ,  repeat nseg times, 

Repeat all of the above input for n = 1 to nmodes, repeat ngrid times, repeat naesrf times. 

Segment limits defined in
boundary condition input
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Aeroelastic Analysis
Format of the modal surface input

• The ordering of the aeroelastic surface points must correspond to 
the order of the points in the CFD grid file read by CFL3D.  

• Aeroelastic segments must be input in the same block order as the 
grid file, and segments must be input in order of ascending indices. 

• When creating a multi zonal grid using the utility ‘splitter’, be aware 
that the final ordering will generally not correspond to the ordering of 
the unsplit grid.  Ordering of the split grid zones can be found in the 
‘splitter.out’ file, from which can be found the required order of the 
surface grid points for the ‘aesurf.dat’ file.

Example: Consider a block face that has dimensions kdim = 49, idim = 
49 with several aeroelastic segments.  If segment 1 has indices k = 
33 to 49, i = 13 to 33, and segment 2 has indices k = 1 to 33, i = 1 to 
33, then segment 2 must be input first.   
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Aeroelastic Analysis
Aeroelastic output

• Aeroelastic time history output is in the file ‘genforce.dat’.  
• This file is generated if iunst = 2 and aeroelastic surfaces 

are defined in the input file (naesrf≠0).
• After header information, modal response data for each 

mode is written sequentially. 
• Unlike output data in the ‘cfl3d.subit_res’ file, a complete 

time history of this data for the entire simulation is 
retained and written/read to/from restart files and 
subsequently output to the ‘genforce.dat’ file. 
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Aeroelastic Analysis
Aeroelastic output

Consider the example output contained in the ‘genforce.dat’ file:

NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap
Mach=  0.7700E+00, alpha=  0.0000E+00, ReUe=  0.3860E+07
Number of aeroelastic surfaces =  1
Data for aeroelastic surface   1
mode number   1

it time xs(2*n-1)                xs(2*n) gforcn(2*n)
1        0.3125000E-01 0.0000000E+00  0.0000000E+00 -0.3471162E-05
2        0.6250000E-01 0.0000000E+00  0.0000000E+00 -0.3214494E-05
3        0.9375000E-01 0.0000000E+00  0.0000000E+00 -0.2996337E-05
4        0.1250000E+00 0.0000000E+00  0.0000000E+00 -0.2789857E-05

mode number   2
it time                  xs(2*n-1)               xs(2*n) gforcn(2*n)
1  0.3125000E-01  0.2980232E-09  0.3442899E-09  0.6291896E-05
2  0.6250000E-01  0.3089730E-09  0.3565678E-09  0.6644112E-05
3  0.9375000E-01  0.3203131E-09  0.3692693E-09  0.6907312E-05
4  0.1250000E+00 0.3320569E-09  0.3824084E-09  0.7143990E-05

Time - Non-dimensional time (CFL3D non-dimensionalization)
xs(2*n-1) - Modal or generalized variable output
xs(2*n) - Modal velocity output
gforcn(2*n) - Modal or generalized force output

Title line from the input file

Data from the input file

Mode 1 time history
from starting run

Mode 2 time history
from starting run
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Aeroelastic Analysis
Strategy for aeroelastic computations 

The following strategies may be used for performing static or dynamic 
aeroelastic simulations

• Static aeroelastic computations can be performed by:
– Start either from scratch (irest = 0), or restart, after a steady state computation (in 

which dt < 0, iunst = 0).  Starting from scratch is not recommended.
– Set iunst = 2 , dt > 0 and damp = .99999… and perform the computation in a  time 

marching manner to convergence.

• Flutter onset computations can be performed by:
– Converging a static solution as outlined above.
– Setting damp to the correct value for the elastic system being modeled.
– Setting an initial perturbation x0(2*n) or x0(2*n-1) in the desired mode.*

* If a restart in the middle of a flutter computation is performed, the initial 
perturbation values from the previous run must be reset to zero at the restart of the new run. 
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Aeroelastic Analysis
User specified modal motion

The user may specify modal motion within the aeroelastic input (e.g. 
control surface rotation, wing plunge oscillation, impulse for frequency 
response, etc…)  The following  modifications to the aeroelastic input 
specifies modal motion:

.

.
moving grid data - aeroelastic surface (aeroelastic motion)

naesrf
1 

iaesrf ngrid grefl uinf qinf nmodes iskyhk
1             -1  0.08333           730.         1000.            2            0 

freq       gmass damp   x0(2*n-1)    x0(2*n)   gf0(2*n)
21.1113283     1.0000        0.00             0.0           0.0 0.
32.1564454     1.0000        0.00             0.0           0.0 0. 

moddfl amp         freq               t0
1       0.005        0.20           0.00
0       0.000        0.00           0.00

grid          iaei iaef jaei jaef kaei kaef
1              0             0                0              0             0             0

.

.

This line specifies motion for
mode 1
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Aeroelastic Analysis
User specified modal motion

moddfl
type of time-varying modal perturbation desired: 
< 0, mode displacement and velocity set to zero
= 0, no perturbation (solution via the dynamic modal equations) 
= 1, harmonic (sinusoidal) perturbation 
= 2, Gaussian pulse 
= 3, step pulse 

A (amp)
amplitude of modal perturbation. 

ωr (freq)
reduced frequency of modal perturbation if moddfl = 1 
half-width of Gaussian pulse if moddfl = 2 
use any value as a placeholder for moddfl = 0 

t0 (t0)
time about which Gaussian pulse is centered if moddfl = 2 
time of the step pulse if moddfl = 3 
use any value as a placeholder for moddfl = 0 



215

Aeroelastic Analysis
User specified modal motion

For harmonic perturbation the modal displacement and velocities for mode n
are computed in the following way:

where A = amp,  ωr = freq in radians per dimensional time, and t* is dimensional 
time,   

(uinf) is in the aeroelastic input section and             is from the main 
aerodynamic input section.    t is CFL3D non-dimensional time.

For a Gaussian  pulse  the displacement and velocity for mode n are computed 
with
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Aeroelastic Analysis
User specified modal motion

For step pulse the modal displacement and velocities for mode n
are computed in the following way:
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Aeroelastic Analysis
Example: Gaussian modal pulse and time step sizing

For this example:

Recommend sizing time step so that there are an absolute minimum of 25 time steps 
within the half life of the pulse (∆t = kr/25).  In this case we would have ∆t = 0.004.

0 0.25 0.5 0.75 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q

t

Time to reach half height

2
0

/)2log(

/5.0,1.0,0.1

r

r

C

agrefltkA

ω=

=== ∞

greflat /0 ∞

1.0/ == ∞agreflk rr ω

∞∞∞∞ == MUaagrefltt /,/*



218

Aeroelastic Analysis
Example: Shaping and sizing the Gaussian modal pulse 
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The user will need to ensure that all 
the modes of interest lie within the 
frequency band of the pulse

Fourier frequency
Spectrum

• For a linear response, we will usually want the amplitude as small as possible while staying 
significantly (say several orders of magnitude) above numerical round off errors.

• Low frequency responses will be very sensitive to the steady convergence of a solution.  Therefore, 
great care must be exercised in adequately converging the steady state if an FRF is the desired 
outcome.

• The solution is very sensitive to sub-iterative convergence at each time step.  A strategy of multiple
restarts with different numbers of sub-iterations through the pulse region can reduce the overall run 
time. 
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Keyword Input
Overview

• There is additional input in CFL3D version 6 that does not fit into an input 
format consistent with earlier versions of the code.  These input parameters 
have been included as keyword input.

• Keyword input is an optional input specified by lines started by a line with ‘>’
and ended with a line containing ‘<‘.

• The following example illustrates how keyword input is included:

cfl3d.out20                                               
ovrlp.bin
patch.bin
restart.bin

>
gamma 1.32
negvol 1
<
NASA Langley BACT Model: NACA 0012 af, AR=1.5 wing,.75TE Flap

Mach       alpha         beta           ReUe Tinf,dR ialph ihstry
0.82000   0.00000   0.00000 0.236E+07      486.00              1            0

Keyword input included at the
end of file specification and 
before the title line.
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Keyword Input
Valid Keywords

Physical Properties

Name Description Default Value

cbar Ref. temp. for Sutherland Law 198.6

gamma Ratio of specific heats 1.4

pr Prandtl number 0.72

prt Turbulent Prandtl number 0.90

Limiters

Name Description Default Value

atol Tolerance for detecting singular lines 10-7

epsa_r Eigenvalue limiter (entropy fix for high Mach flows) 0.0
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Keyword Input
Valid Keywords

Name Description Default Value

avn Factor multiplying uref for preconditioning 1.0

cprec Relative amount of preconditioning 0.0

uref Limiting velocity for preconditioning xmach

Preconditioning

Name Description Default Value

cltarg Target Cl 99999.

dalim Limit of alpha change (deg) per update 0.2

icycupdt Number of cycles between alpha updates  (if > 0; if 
< 0, alpha is never updated)

1

rlxalph Relaxation factor used to update angle of attack 1.0

Specified CL
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Keyword Input
Valid Keywords

Name Description Default Value

cflturb Cfl no. for turbl eqns. = cflturb x abs(dt) If cflturb > 0 0
(model dependent default)

edvislim Limiter for eddy viscosity in 2-equation
turb models; eddy viscosity limited to edvislim times the 

laminar viscosity

100000.

ibeta8kzeta flag (0/1) to set beta8 term when using k-enstrophy
turbulence model (ivisc=15); 0 = use beta8=0.0 (helps avoid 

numerical problems); 1 = use beta8=2.3 (available after
V6.3) 

0

ides flag (0/1) to perform DES with turbulence model (1) or not 
(0) 

0

cdes constant associated with DES 0.65

ieasmcc2d flag (0/1) to turn on 2-D curvature correction when using 
EASM models (ivisc=8,9,11,12,13,14) (1) or not (0) 

(available after V6.3) 

0

isarc2d flag (0/1) to turn on 2-D curvature correction when using SA 
model (ivisc=5) (1) or not (0) (available after V6.3) 

0

Turbulence models
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Keyword Input
Valid Keywords

Name Description Default Value

sarccr3 value of cr3 parameter in SARC model (available after V6.3) 0.6

ikoprod flag: 0=use approximate (vorticity-based) turb production 
term (-2*mut*WijWji) for turb models 6, 7, 10, or 15; 1=use 
strain-rate based term (2*mut*SijSij); 2=use full production 

term (ivisc=15 only) (available after V6.3) 

0
(vorticity-based 

production)

isstdenom flag (0/1): 0=use vorticity term in denominator of eddy
viscosity in SST model (#7); 1=use strain term

(available after V6.3) 

0
(vorticity term)

itaturb flag (0/1) to control time accuracy of turb. model; 0 for 1st 
order in time regardless of parameter "ita" for the mean flow; 

1 for same order as set by ita

1
(turb. Time accuracy 

same as mean flow, set 
via ita)

iturbord flag controls whether turbulence model advection terms are 
1st or 2nd order upwind on RHS (1=1st, 2=2nd) (note: LHS 

uses 1st order in both cases) (available after V6.3) 

1
(1st order)

Turbulence models
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Keyword Input
Valid Keywords

Name Description Default Value

iturbprod flag: 0=use strain-rate based turb production
term (2*mut*SijSij) for EASM turb models 8, 9, 13, or 14;

1=use full production term 

0
(strain-rate based term)

nfreeze Freeze turb. model for nfreeze cycles 0
(not frozen)

nsubturb Number of iterations of turb model per cycle 1

pklimterm factor used to limit production of k in 2-eqn turb models 
(chooses min of Pk and pklimterm*Dk); make this term large 

for no limiting (available after V6.3) 

20.0

tur10 & tur20 turbulent quantity freestream levels < 0 use default value 
(different for each turb model, see manual Appendix H)

=0 use this number as the specified user input value 

-1

tur1cut value that nondimensional epsilon (or omega or enstrophy) 
is reset to when it tries to drop equal to or below tur1cutlev; 
if <=0 then no update occurs when value tries to drop equal 

to or below tur1cutlev (available after V6.3) 

1.e-20 for all models 
except -1 for ivisc=15

Turbulence models
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Keyword Input
Valid Keywords

Name Description Default Value

tur2cut value that nondimensional k is reset to when it tries to drop 
equal to or below tur2cutlev; if <=0 then no update occurs 

when value tries to drop equal to or below tur2cutlev
(available after V6.3) 

1.e-20

tur1cutlev & 
tur2cutlev

lower levels of nondimensional epsilon (or omega or 
enstrophy)

and k which, when reached, cause the turb quantities to be 
reset to tur1cut or tur2cut (available after V6.3) 

0

Turbulence models
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Keyword Input
Valid Keywords

Name Description Default Value

idef_ss flag (0/1) to deform volume grid to surface in file 
newsurf.p3d 

0
(don’t deform)

meshdef flag (0/1) to bypass flow solution while still computing grid 
operations such as metrics and volumes; 0 = normal 

operation; 1 = bypass flow solution (available after V6.3) 

0

negvol flag (0/1) to enable/disable stop if neg. volumes/bad 
metrics are detected  

0
(stop for negative volumes)

Deformation/grid motion

Input/output control

Name Description Default Value

ibin flag (0/1) for formatted/unformatted output 
plot3d files 

1 (unformatted)

iblnk flag (0/1) for un-iblanked/iblanked output plot3d 
files 

1 (iblanked)
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Keyword Input
Valid Keywords

Input/output control

Name Description Default Value

iblnkfr flag (0/1) for un-iblanked/iblanked fringe points in 
plot3d files (overset grids only) 

1
(iblanked)

icgns flag (0/1) to not use/use CGNS files* 0 (don’t use CGNS files)

ip3dgrad flag (0/1) for solution/derivative data output to 
plot3d q file (complex code only) 

0
(solution to q file)

irghost flag to read ghost-cell data from restart file (1) or 
not (0); V5 restart files and Beta V6 restart files do 
not contain ghost-cell data; newer V6  restart files 

do 

1
(read ghost-cell data)

iwghost flag to write ghost-cell data to restart file (1) or not 
(0); V5 restart files and Beta V6 restart files do not 
contain ghost-cell data; newer V6 restart files do 

1
(write ghost-cell data)
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Keyword Input
Valid Keywords

Name Description Default Value

itime2read flag (0/1) to skip/read 2nd order (in time)
turbulence terms and dt in restart file: need to skip 
if using an older time-accurate-with-2nd-order-time 

restart file 

1
(read 2nd order time 

turbulence terms and dt)

iteravg flag to store iteration-averaged conserved 
variables in PLOT3D files: 0 = no averaging or 

storage 1 = start averaging now
2 = continue averaging from previous run 

0 

Input/output control

Name Description Default Value

memadd additional memory (in words) added to work array
(in case sizer underestimates) 

0
(no addition to work)

memaddi additional memory (in words) added to iwork array
(in case sizer underestimates) 

0 
(no addition to iwork)

Memory management
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Keyword Input
Valid Keywords

Name Description Default Value

noninflag flag (0/1) to indicate whether to use inertial (0) or 
noninertial (1) reference frame for governing 

equations; noninertial frames allow for steady state 
solutions if the rotation rate is constant 

0
(inertial reference frame)

xcentrot rotation center x-coordinate for non-inertial 
reference frame (also used for roll-angle input) 

0.0 

ycentrot rotation center y-coordinate for non-inertial 
reference frame (also used for roll-angle input) 

0.0

xrotate rotation rate about x-axis for non-inertial reference 
frame (non-dimensionalized the same way as 

omegax for rotating grids - see manual) 

0.0

yrotate rotation rate about y-axis for non-inertial reference 
frame (non-dimensionalized the same way as 

omegay for rotating grids - see manual) 

0.0

zcentrot rotation center z-coordinate for non-inertial 
reference frame (also used for roll-angle input) 

0.0

zrotate rotation rate about z-axis for non-inertial reference 
frame (non-dimensionalized the same way as 

omegaz for rotating grids - see manual) 

0.0

Reference frame
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Keyword Input
Valid Keywords

Name Description Default Value

xrotrate_img complex perturbation to rotation rate about x-axis 
for non-inertial reference frame, for computing rate 

derivatives 

0.0

yrotrate_img complex perturbation to rotation rate about y-axis 
for non-inertial reference frame, for computing rate 

derivatives 

0.0 

zrotrate_img complex perturbation to rotation rate about z-axis 
for non-inertial reference frame, for computing rate 

derivatives 

0.0

Reference frame

Name Description Default Value

alpha_img Imaginary perturbation to alpha 0.0

beta_img Imaginary perturbation to beta 0.0 

geom_img Imaginary perturbation to grid 0.0

Other
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Keyword Input
Valid Keywords

Other

Name Description Default Value

reue_img Imaginary perturbation to unit Re 0.0

surf_img Imaginary perturbation to surface grid 0.0

ifullns flag (0/1) to specify inclusion of cross-derivative 
terms; 0 = thin-layer N-S; 1 = full N-S (available 

after V6.3) 

0

ivolint flag (0/1) to use approximate/exact one-to-one
boundary volumes (0 emulates V5.0) 

1 (exact volumes)

tinf_img Imaginary perturbation to Tinf 0.0

xmach_img Imaginary perturbation to Mach no. 0.0

iaxi2plane flag for use with particular axisymmetric cases (for 
which i2d=0 and idim=2); if iaxi2plane = 1, the time 
step based on CFL number is modified so it does 
not depend on the i-direction metrics (available 

after V6.3) 

0
(no mods to time step)

roll_angle x-axis roll angle (deg) "+" is clockwise viewed from 
"- x" (left roll to pilot) (grid is rotated to this angle) 

0.0
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Block Splitting and MPI
Overview

• Message Passing Interface (MPI) protocol is used for parallelization of 
CFL3D

• MPI parallelizes by parceling out grid blocks to different processors
• For MPI to be useful, at least two or more blocks and at least three 

processors will be required.
• Often grids will arrive as multiple block grids.  However, there are several 

reasons that additional block splitting will be required:
– If the original mesh is not split into a sufficient number of blocks to efficiently use 

the processors available.
– If the blocks are of disparate sizes, so that load balancing will be difficult.
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Block Splitting and MPI
Overview

• Note, however, that there is a limit on the number of blocks for a given 
overall grid size for which efficient parallelization can take place.

– Problem of growing communications between processors compared to
processing per block (communication time).

– Because CFL3D treats block boundaries explicitly, splitting into an ever 
increasing number of blocks amounts to making the code explicit. This means 
that an increasing number of sub-iterations will be required as the number of 
blocks increases

• The following illustrates the increasing communications with decreasing 
block sizes….
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Block Splitting and MPI
Problem of the humming bird versus the elephant

Consider the ratio of number of surface points to the total number of grid points as grid size 
diminishes.  These results are based on a grid having equal idim, jdim, kdim dimensions.
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idim

volume
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At an average dimension 
of 10x10x10, boundary 
data takes a third of
the total memory. (Which
is not a problem for MPI, but…
communication becomes
a growing percentage of
the computation time.)



235

Block Splitting and MPI
Overview

With the issues clearly in mind, there are times when splitting is useful…

• The tool ‘splitter’ is available with CFL3D for use in splitting blocks.  
• It is created by performing the following command in the ‘build’ directory: 

make splitter

• The executable will be in the directory ‘~/cfl3dv6/build/split/seq/’.
• An example input can be found in the CFL3D version 6 web page.
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Block Splitting and MPI
Example: Splitting a single C-H grid

Lets consider again the BACT wing we have looked at previously. This 
grid has i,j,k dimensions 73 (spanwise) x 345 (streamwise) x 73 (normal to 
wing).

Suppose a 32 processor PC cluster
is available for this problem.  It would
be useful to split this block into at least
24 blocks.  However consideration 
must also be given to how many 
times each dimension can be split 
and still retain multigridability
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Block Splitting and MPI
Example: Splitting a single C-H grid

An acceptable block split can be obtained by requiring M, the number of 
split blocks, in the following computation

be an integer.  D is the overall dimension of the un-split grid, and d is 
the proposed dimension of the split grid.  For the current example, the j-
dimension can be split with blocks having dimension of 9, 87 or 173.

1
1

−
−

=
d
DM

2
1173
1345,4

187
1345,43

19
1345

=
−
−

==
−
−

==
−
−

= MMM
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Block Splitting and MPI
Example: Splitting a single C-H grid

Note that block dimensions of 87 or 173 will allow only 3 levels of multigrid, a 
dimension of 9 allows 4.  We will chose a dimension of 87.

Similar computations for the idim = 73 and kdim = 73 lead us to chose 6 blocks in 
those directions with dimension of 13.  This will result in a total of 144 blocks.   
This will allow us to use 4, 24, 48 or 144 processors efficiently.

These computations result in 3 splits in the j-direction, 5 splits in the i-direction 
and 5 splits in the k-direction for a total of 13 splits.  The input that performs these 
splits is shown in the next slide.
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Block Splitting and MPI
Example: Splitting a single C-H grid

The splitter input file for this grid is 
shown:

INPUT (UNSPLIT) FILES 
cfl3d.inp 
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER      IRONVER       IGRDFMT       ISDFMT

5                     1                    1       1 
OUTPUT (SPLIT) FILES 
cfl3d.inp_split 
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER      IRONVER      IGRDFMT        ISDFMT

5                    1                    1        1 
NSPLITS 
13
1
2 
87 
1
2 
173 
1
2
259 

1
1
13
1
1
25
1
1
37
1
1
49
1
1
61
1
3
13
1
3
25
1
3
37
1
3
49
1
3
61
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Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES 
cfl3d.inp 
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER      IRONVER       IGRDFMT       ISDFMT

5                     1                    1       1 
OUTPUT (SPLIT) FILES 
cfl3d.inp_split 
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER      IRONVER      IGRDFMT        ISDFMT

5                    1                    1        1 

cfl3d.inp - cfl3d input file for the unsplit grid 
ronnie.inp - ronnie input file for the unsplit grid, if not a patched case, enter the word null 
grid.unf - grid file for the unsplit grid; can be formatted or unformatted 
sd_grid.unf - sensitivity file for the unsplit grid NOTE: Currently not supported in Version 6; the same 

functionality is now handled via complex variables and a complex-valued grid file; 
enter the word null 
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Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES 
cfl3d.inp 
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER      IRONVER       IGRDFMT       ISDFMT

5                     1                    1       1 
OUTPUT (SPLIT) FILES 
cfl3d.inp_split 
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER      IRONVER      IGRDFMT        ISDFMT

5                    1                    1        1 

cfl3d.inp_split - cfl3d input file for the split grid 
ronnie.inp_split - ronnie input file for the split grid, if not a patched case, enter the word null
grid_split.unf - grid file for the split grid; can be formatted or unformatted 
sd_grid_split.unf - sensitivity file for the split grid NOTE: Currently not supported in Version 6; the 

same  functionality is now handled via complex variables and a complex-
valued grid file; enter the word null
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Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES 
cfl3d.inp 
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER      IRONVER       IGRDFMT       ISDFMT

5                     1                    1       1 
OUTPUT (SPLIT) FILES 
cfl3d.inp_split 
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER      IRONVER      IGRDFMT        ISDFMT

5                    1                    1        1 

icflver
= 4 the cfl3d input file is a version 4.1 type 
= -4 the cfl3d input file is a version 4.1hp type 
= 5 the cfl3d input file is a version 5/6 type 

ironver
= 0 ronnie input file is the old style, with all "from" blocks listed on one line 
= 1 ronnie input file is the new style, with each "from" block having it's own line 
NOTE: a value for ironver must always be entered, even if the case does not involve 
patched grids. 
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Block Splitting and MPI
Example: Splitting a single C-H grid

INPUT (UNSPLIT) FILES 
cfl3d.inp 
ronnie.inp
grid.unf
sd_grid.unf
ICFLVER      IRONVER       IGRDFMT       ISDFMT

5                     1                    1       1 
OUTPUT (SPLIT) FILES 
cfl3d.inp_split 
ronnie.inp_split
grid_split.unf
sd_grid_split.unf
ICFLVER      IRONVER      IGRDFMT        ISDFMT

5                    1                    1        1 

igrdfmt
= 0 grid file is formatted 
= 1 grid file is unformatted 

isdfmt
= 0 sensitivity file is formatted 
= 1 sensitivity file is unformatted 

NOTE: Currently not supported in Version 6; the same functionality is now handled via complex 
variables and a complex-valued grid file;  however a value is still required - use 0 or 1 
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Block Splitting and MPI
Example: Splitting a single C-H grid

.

.
NSPLITS 
13
1
2 
87 
1
2 
173 
1
2
259 

.

.

nsplits - number of grid splits to perform (can be 0 in order to convert grid from formatted to 
unformatted or vice versa.   Following the value of nsplits, nsplits triplets of integers must 
appear, one integer of the triplet per line…. 

nsplits
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Block Splitting and MPI
Example: Splitting a single C-H grid

.
.

NSPLITS 
13
1
2 
87 
1
2 
173 
1
2
259 

.

.

iblk - block number of the block to be split. NOTE: iblk always refers to the original, unsplit
block number 

ldir
= 1 split in the i-direction 
= 2 split in the j-direction 
= 3 split in the k-direction 

index - split the block in the ldir direction at this value of the index 

iblk

ldir

index

Same triplet repeated 13 times
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Block Splitting and MPI
Example: Splitter output

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* *                                                            * *
* *        SPLITTER - CFL3D BLOCK AND INPUT FILE SPLITTER       * *
* *                                                            * *
* *   VERSION 6.X :  Computational Fluids Lab, Mail Stop 128,  * *
* *                  NASA Langley Research Center, Hampton, VA * *
* *                  Release Date:       MMM DD, YYYY.         * *
* *                                                            * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

memory allocation:   431.046108 Mbytes, double precision

input (unsplit) files
cfl3d.inp
null
wbgrid.cfl
null

icflver ironver igrdfmt isdfmt
5         1         1         1

output (split) files
cfl3d.inp_split
null
wbgrid_split.cfl
null

icflver ironver igrdfmt isdfmt
5         1         1         1
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Block Splitting and MPI
Example: Splitter output

converting unsplit cfl3d input file to tlns3d map file

checking dimensions...

reading grid...
grid: wbgrid.cfl

block #   1:  il=  73,   jl= 345,   kl=  73

number of splits =  13
split  block  coord index

1      1      J      87
2      1      J    173
3      1      J    259
4      1      I      13
5      1      I      25
6      1      I      37
7      1      I      49
8      1      I      61
9      1     K      13

10      1    K      25
11      1    K      37
12      1    K      49
13      1    K      61

new block  old block  i0  i1  j0  j1  k0  k1
1           1        1  13     1   87  61  73
2           1        1  13   87 173  61  73
3           1        1  13 173 259  61  73
4           1        1  13 259 345  61  73
5           1      13  25 259 345  61  73
6           1      13  25 173 259  61  73
7           1      13  25   87 173  61  73
8           1      13  25     1   87  61  73
9           1      25  37     1   87  61  73
10          1      25  37   87 173  61  73
11          1      25  37 173 259  61  73
12          1      25  37 259 345  61  73
13          1      37  49 259 345  61  73
14          1      37  49 173 259  61  73
15          1      37  49   87 173  61  73
16          1      37  49     1   87  61  73
17          1      49  61     1   87  61  73
18          1      49  61   87 173  61  73
19          1      49  61 173 259  61  73
20          1      49  61 259 345  61  73
21          1      61  73 259 345  61  73
22          1      61  73 173 259  61  73
23          1      61  73   87 173  61  73
24          1      61  73     1   87  61  73
25          1      61  73     1   87  49  61
26          1      61  73   87 173  49  61
27          1      61  73 173 259  49  61
28          1      61  73 259 345  49  61
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Block Splitting and MPI
Example: Splitter output

.

.

.
121          1      61  73     1   87   1  13
122          1      61  73   87 173   1  13
123          1      61  73 173 259   1  13
124          1      61  73 259 345   1  13
125          1      49  61 259 345   1  13
126          1      49  61 173 259   1  13
127          1      49  61   87 173   1  13
128          1      49  61     1   87   1  13
129          1      37  49     1   87   1  13
130          1      37  49   87 173   1  13
131          1      37  49 173 259   1  13
132          1      37  49 259 345   1  13
133          1      25  37 259 345   1  13
134          1      25  37 173 259   1  13
135          1      25  37   87 173   1  13
136          1      25  37     1   87   1  13
137          1      13  25     1   87   1  13
138          1      13  25   87 173   1  13
139          1      13  25 173 259   1  13
140          1      13  25 259 345   1  13
141          1        1  13 259 345   1  13
142          1        1  13 173 259   1  13
143          1        1  13   87 173   1  13
144          1        1  13     1   87   1  13

split-grid basic dimensions are multigridable to ncg =  1

Input   points:  1838505
Ouput points:  2117232

29          1      49  61 259 345  49  61
30          1      49  61 173 259  49  61
31          1      49  61   87 173  49  61
32          1      49  61     1   87  49  61
33          1      37  49     1   87  49  61
34          1      37  49   87 173  49  61
35          1      37  49 173 259  49  61
36          1      37  49 259 345  49  61
37          1      25  37 259 345  49  61
38          1      25  37 173 259  49  61
39          1      25  37   87 173  49  61
40          1      25  37     1   87  49  61
41          1      13  25     1   87  49  61
42          1      13  25   87 173  49  61
43          1      13  25 173 259  49  61
44          1      13  25 259 345  49  61
45          1        1  13 259 345  49  61
46          1        1  13 173 259  49  61
47          1        1  13   87 173  49  61
48          1        1  13     1   87  49  61

.

.

.
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Block Splitting and MPI
Notes regarding use:

• IF A LIMITER IS DESIRED, USE IFLIM=4. This will allow for consistent results with 
block splitting; iflim=3 is not recommended - iflim=4 is basically a correct 
implementation of iflim=3 for multiple blocks, and should now be viewed as the 
recommended limiter for any case that needs one. 

• Also, for exact consistency between split and unsplit grids, version 5 emulation (i.e. 
"Install -v5) should not be used. Version 5 (and earlier versions) made an
approximation for cell volumes at 1-1 block interfaces that has been eliminated in 
version 6 in favor of the exact treatment. 

• The input file part of the splitter works by first converting the unsplit CFL3D input file 
to a TLNS3D map file, splitting the TLNS3D map file, then converting the split 
TLNS3D map file back to a CFL3D input file. 
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Block Splitting and MPI
Notes (continued):

• Caveats: The conversions from the CFL3D input file to a TLNS3D map file are not 
perfect! The user is urged check the resulting split CFL3D input (and patch) files. 

– A useful check before actually splitting the files is to run this splitter with the number of 
splittings = 0, and the output grid file as null. This will cause to code to go through the 
translations, but the "split" files will have the same numbers of blocks, and the "split" grid will 
not be output. 

– A "diff" or "gdiff" will point to translation-induced differences that should be easier to sort out 
than when coupled with true splitting. Note that the 2-step process almost always results in a 
*reordering* of some boundary condition segments. 
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Running CFL3D in MPI mode

• MPI requires one processor for overhead.  For example if a 32 
processor cluster is employed, and there are 28 blocks to be 
computed on 28 processors, then the command line will read:

mpirun –np 29 cfl3d_mpi < cfl3d.inp &

• You may want to verify the correct procedure for running mpi code 
on your platform (e.g. some mpp's use -n instead of -np) 
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Running CFL3D in MPI mode
• Because version 6 has dynamic memory allocation, there is no requirement to run precfl3d before 

you can run cfl3d. However, you may still find it useful to do so in order to assess how much 
memory will be required to run the case at hand, allowing you to determine whether a particular 
problem can fit within the memory of the machine, or to determine the appropriate queue in which 
to submit the job. 

• The usage of precfl3d has changed slightly from previous versions: you must now specify the 
number of processors in addition to the input file, for example:

precfl3d -np num_procs < cfl3d.inp &

where num_procs is the total number of processors, including the host. When running on a single 
processor, that processor is the host, so num_procs=1 will suffice to assess the memory 
requirements for the sequential version of the code. 

• An important reason why you may want to run precfl3d before running the parallel version of the 
code is that for num_procs > 1, precfl3d will output an auxiliary file called ideal_speedup.dat. 
This file will list the best possible speedup you could hope to achieve for the current case, using 
various numbers of compute processors, ranging from 1 to the number of zones in your grid.
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Running CFL3D in MPI mode
The BACT case with 144 blocks was run 
on 24 processors (-np 25). In the 
‘precfl3d.out’ file the  following 
information is contained:

BLOCK TO NODE MAPPING
no. of blocks =  288
no. of  nodes =   24
block    node

1       1
2       1
3       2
4       2
5       3
6       3
7       4
8       4
9       5

10      5
11       6
12       6
13       7
14       7

.

.

.
265      13
266      13
267      14
268      14
269      15
270      15
271      16
272      16
273      17
274      17
275      18
276      18
277      19
278      19
279      20
280      20
281      21
282      21
283      22
284      22
285      23
286      23
287      24
288      24
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Running CFL3D in MPI mode
.
.

**************************************************************

SUMMARY OF STORAGE REQUIREMENTS - W + WK ARRAYS

sequential version:

permanent array w   requires  131825665 (words)
temporary array wk  requires    2681342 (words)
temporary array iwk requires     187820 (words)

parallel version, per node:

permanent array w   requires    5506908 (words)
temporary array wk  requires    1500235 (words)
temporary array iwk requires     187820 (words)

>>> Estimate for mwork (sequential)     =  134507007 <<<

>>> Estimate for mworki (sequential)     =     187820 <<<

>>> Estimate for mwork (per node, parallel) =    7007143 <<<

>>> Estimate for mworki (per node, parallel) =     187820 <<<

>>> Parallel code sized for  24 nodes, min. (+host)       <<<

**************************************************************
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Running CFL3D in MPI mode
In the ‘cfl3d.out’ file the same information 
is found plus the  following  contained at 
the end:

.

.
computational rate by mesh sequence (based on wall time):
iseq 1  181.13 microseconds/cell/time step  

90.56 microseconds/cell/subiteration

timing for complete run - time in seconds

node      user    system     total    wall clock
0     10.15     17.60     27.75      325.00 
1       3.64       0.55       4.19      228.00
2       5.37       0.92       6.29      325.00
3       3.90       0.52       4.42      228.00 
4       5.36       0.87       6.23      325.00  
5       5.85       1.14       6.99      324.00 
6       4.54       0.89       5.43      228.00   
7       4.38       0.83       5.21      227.00
8       4.03       0.79       4.82      226.00
9       4.31       0.70       5.01      228.00

10      6.08       1.00       7.08      325.00 

11      4.40      0.77      5.17      227.00
12      4.19      0.65      4.84      227.00
13      4.20      0.74      4.94      226.00 
14      4.42      0.66      5.08      225.00   
15      4.25      0.81      5.06      226.00 
16      4.35      0.68      5.03      225.00  
17      4.08      0.83      4.91      225.00 
18      4.22      0.87      5.09      225.00
19      4.35      0.66      5.01      225.00
20      4.17      0.66      4.83      225.00 
21      3.78      0.55      4.33      224.00
22      3.59      0.49      4.08      225.00
23      3.58      0.51      4.09      224.00
24      3.40      0.40      3.80      224.00

------------------------------------
total:    114.59     35.09    149.68 

total run (wall) time =    0 hours    3 minutes   44 seconds

memory for cfl3d has been deallocated
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Flow Field Visualization
Plot3D output

CFL3D is capable of creating Plot3D files of the grid and flow field. 
Specification of the region of the flow field for output is found in the 
following input lines: 

. 

.
dt irest iflagts fmax iunst cfl_tau

-2.0           0            0          1.0           0        5.0
ngrid nplot3d       nprint nwrest ichk i2d     ntstep ita

1               1              1       1000         0              1             1          -2
ncg iem iadvance iforce ivisc(i)     ivisc(j)   ivisc(k)

2              0               0             1       0              0             5
.
.

plot3d output:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0               1               1      1              1           999              1         1    999     1
movie

0

nplot3d specifies the number
of blocks to output

Input nplot3d
lines

If nplot3d < 0, then the Plot3D files are automatically set to include all solid 
Surfaces (no field points) for 3D cases or all field points for 2D cases
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Flow Field Visualization
Plot3D output

.
.

plot3d output:
grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc

1             0               1               1      1              1           999              1         1    999     1
movie

0

Grid - Designated grid number to be output
iptyp = 0   - grid point type – grid file and Q file output

= 1   - cell center type – grid file and Q file output
= 2   - cell center type - grid file and turbulence file output (ivisc > 1 only)
> 2   - cell center type – grid file and function file output (iptype = 3 – minimum distance to 

nearest viscous wall or directed distance (ivisc > 1 only), iptype = 4 – eddy    
viscosity (ivisc > 1 only)

ista, jsta, ksta - starting indices in the i,j,k directions
iend,jend,kend - ending indices in the i,j,k directions (note that if these values are set higher than  

idim, jdim,kdim, the code will reset them to the block dimensions)
iinc,jinc,kinc - increment in the i,j,k directions

Note:  Setting ista = iend = iinc = 0, etc… is a short hand way of specifying the entire range.
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Flow Field Visualization
Movie output

.

.
plot3d output:

grid         iptyp ista iend iinc jsta jend jinc ksta kend kinc
1             0               1               1      1              1           999              1         1    999     1

movie
10

Note that one gird file and one solutions file are generated.

Movie   = 0 no output of intermediate solutions (if nplot3d > 0), then a single solution is written at the end of the run.
Movie   > 0 output of additional solutions every movie iterations (time steps)
Movie   < 0 output of the initial flow field at the beginning of the run and output of additional solutions every movie

iterations (time steps)

Caution:  Use with care.  Plot3D file will get very large very quickly.

The tool ‘moovmaker’ will read the plot3D solution and grid file and create a movie for a 2D flow field in which the 3rd

dimension will be time.  This allows animating the 3rd dimension to produce a movie of the flow field.

Flag to append Plot3D solution output
every 10 time steps
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Useful CFL3D Tools
• Get_FD.F

– This program reads two CFL3D restart files and calculate finite differences of force and 
moment coefficients; it is used to validate complex-variable approach for determining solution 
derivatives. 

• INGRID_to_p3d.F 
– This program converts PEGSUS 4.x INGRID file to a PLOT3D file that can be used in 

CFL3D. Note that the INGRID file must correspond to grid points rather than "augmented" 
cell centers. 

• XINTOUT_to_ovrlp.F
– This program converts the XINTOUT overset grid interpolation file from PEGSUS to the 

ovrlp.bin file used by CFL3D. 
• cfl3d_to_pegbc.F 

– This program creates a peg.bc.raw file for use with PEGSUS 5.x. 
• cgns_to_cfl3dinput.F 

– This program reads a CGNS file and creates a PLOT3D-type grid as well as a best-guess for 
a CFL3D input file. 
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Useful CFL3D Tools
• everyother_xyz.F

– This program reads a grid and creates an every-other-point grid. This can be useful in 
combination with the program v6inpdoubhalf.F, in order to reduce the required CFL3D run-
time memory when you are only running on a coarser-level grid (and not taking it up to the 
finer level(s). 

• grid_perturb.F
– This program generates a real-valued grid (PLOT3D multiblock form) by reading in a real-

valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-
sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z
components of the ndv design variables). The code Get_FD.F may be used with the two 
restart files to determine d(Cl)/d(DV), d(Cd)/d(DV), etc. 

• grid_perturb_cmplx.F
– This program generates a complex-valued grid (PLOT3D multiblock form) by reading in a 

real-valued grid (PLOT3D multiblock form) and a corresponding real-valued matrix of grid-
sensitivity derivatives (PLOT3D multiblock function file form, with 3*ndv variables for the x,y,z
components of the ndv design variables). The output grid may be read into the complex
version of CFL3D (cfl3dcmplx_mpi or cfl3dcmplx_seq) to determine the solution derivatives 
with respect to the chosen design variable. 
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Useful CFL3D Tools
• initialize_field.F

– This program creates a restart.bin restart file in which you can specify specific initial 
conditions, region by region. This can be useful when "freestream everywhere" is not a 
desirable initial condition. 

• moovmaker.F
– This program reads the PLOT3D files output by CFL3D when the MOVIE parameter is used 

for 2-D datasets (or 3-D datasets surface-only), and creates new PLOT3D files with time as 
the third (k) direction. 

• p3d_to_INGRID.F 
– This program converts either PLOT3D or CFL3D type grids into either INGRID type grids that 

can be used with PEGSUS 4.x, or PLOT3D type grids that can be used with PEGSUS 5.x. 
The converted grids can contain either the grid points as given in the input grids, or 
"augmented" cell centers of the input grids. 

• p3d_to_cfl3drst.F 
– This program reads PLOT3D files and creates an approximate restart.bin restart file. This 

can be useful if: (1) you are given a PLOT3D Q-file from another code, and you wish to use it 
as a basis for starting CFL3D, or (2) you have lost the CFL3D restart file, but you still have 
the PLOT3D Q-file. 
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Useful CFL3D Tools
• plot3dg_to_cgns.F 

– This program reads a PLOT3D grid file and a CFL3D input file and creates a CGNS file (with 
grid, BC, and 1-to-1 connectivity information in it). 

• v6_restart_mod.F 
– This program reads a restart.bin restart file and manipulates it. It can switch between 

unformatted and formatted (which is useful if you need to transfer the restart file to a machine 
of different architecture). It can also write out the restart file either the same size, half the 
size, or double the size. Going to half size is useful if one wishes to restart from a fine grid 
solution and run on a coarser level. User can choose to coarsen/refine only particular index 
directions, if desired. The program cannot both coarsen and refine different directions 
simultaneously. 

• v6inpdoubhalf.F 
– This program reads a CFL3D input file and creates a new input file appropriate for a grid of 

either half or double the size. This can be useful in combination with the program 
everyother_xyz.F when running on coarser grid levels, and you wish to reduce the run-time 
memory required. 
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Summary

• CFL3D is a general purpose production-level CFD code for fluid 
dynamics, with many capabilities and options.

• This tutorial has summarized many of the newest features of the 
code, and also has explained in detail how to set up and run it for 
general cases.

• Particular focus has been given to CFL3D’s upgraded deforming 
mesh and aeroelastic analysis capabilities.
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